Identyfikatory
Warianty tytułu
Modelowanie widm zapylonych i niezapylonych znad marsjańskich powierzchni na podstawie pozyskanych widm w podczerwieni
Języki publikacji
Abstrakty
This article aims to show mineral composition of Mars surface based on TES spectra (Thermal Emission Spectrometer-Mars Global Surveyor), measured in infrared thermal range. It presents how, based on TES data, spectra from selected Martian regions were modelled and interpreted after prior removal of atmospheric influences from the spectra using the Radiative Transfer Algorithm and Deconvolution Algorithm. The spectra from dark area of Cimmeria Terra and light Isidis Planitia were elaborated in cited publications. In the case of light areas ex. Arsia Mons, spectrum of dusty weathered surface of Mars was obtained (also after removal of atmospheric influences) from averaging spectra of dusty regions of Mars. Those aforementioned spectra were used in modelling Martian surface aiming to determine their mineral composition. Deconvolution Algorithm was chosen from the mentioned methods as a tool for the modelling. The spectra described above were used for the Martian surface modelling, such as the Hellas Basin and Martian meteorites SNC (Shergottites, Nakhlites, Chassignites), in order to determine their mineral composition. As a modelling tool one of the following methods of deconvolution algorithm can be chosen. Spectra for the modelling were obtained from the PFS spectrometer (Planetary Fourier Spectrometer) - (Mars Express) and mineralogical composition of basalts from the southern part of Poland were used for this purpose. The method of modelling which was used to determine the mineral composition of Mars and dust can be used in determining mineral composition of selected areas on the Earth from aerial and satellite levels, e.g., soil and vegetation with the use of spectral libraries and spectra of individual plant species.
Artykuł opisuje próbę przybliżenia składu mineralogicznego powierzchni Marsa na podstawie gotowych widm z TES (Thermal Emission Spectrometer-Mars Global Surveyor), zmierzonych w podczerwieni, w zakresie termalnym. Przedstawione tu będzie, jak na podstawie danych z TES zostały modelowane i zinterpretowane widma z wybranych terenów Marsa po uprzednim oddzieleniu wkładu atmosfery od całości widma, algorytmami: transferu promieniowania (Radiative Transfer Algorithm) i dekonwolucji (Deconvolution Algorithm). W cytowanych publikacjach opracowano widma z ciemnego obszaru Cimmeria Terra i obszaru jasnego - Isidis Planitia . W przypadku obszarów jasnych, przykładowo obszar Arsia Mons, widmo zapylonej i zwietrzałej powierzchni Marsa zostało uzyskane (również po oddzieleniu wpływu atmosfery) z uśrednienia widm pochodzących z terenów o wysokim zapyleniu. Te opisane powyżej widma zostały wykorzystane do modelowania powierzchni marsjańskich, takich jak basen Hellas oraz meteoryty marsjańskie SNC, w celu ustalenia ich składu mineralnego. Jako narzędzie modelowania wybrano jedną z wymienionych metod Deconvolution Algorithm. Widma do własnego modelowania były pozyskane ze spektrometru PFS (Planetary Fourier Spectrometer)-(Mars Express) oraz wykorzystano w tym celu skład mineralogiczny bazaltów z południowej części Polski.
Czasopismo
Rocznik
Tom
Strony
287--308
Opis fizyczny
Bibliogr. 21 poz.., rys., tab., wykr., wzory
Twórcy
autor
- Space Technologies Division, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw
- Space Research Centre, Polish Academy of Sciences, ul. Bartycka 18A, 00-716 Warsaw
Bibliografia
- [1] Christensen P. R., el al., 2000, "Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data", Journal of Geophysical Research, 105, (E4), pp. 9609-9621.
- [2] Bell J. F. and Mc Sween H. Y.,2000, Mineralogicand compositional properties of Martian soil and dust: Result from Mars Pathfinder. Journal of Geophysical Research, 105, (E1). pp. 1721-1755.
- [3] Britt D. T., et al., 1998, 'The mineralogy of the Mars Pathfinder landing site". Lunar and Planetary Science, XXIX, Houston, TX, Abstr. 1776.
- [4] Richard V. and Morris D., 2000, "Mineralogy, composition, and alteration of Mars Pathfinder rocks and soils: Evidence from multispectral, elemental, and magnetic data on terrestrial analogue, SNC meteorite, and Pathfinder samples". Journal of Geophysical Research, 105, (El), pp. 1757-1817.
- [5] Bell J. F. and Mc Sween H. Y., 2000, "Mineralogic and compositional properties of Martian soil and dust: Result from Mars Pathfinder", Journal of Geophysical Research, 105, (El), pp. 1721-1755.
- [6] BridgesN. T. and Crisp J .A., 2001, "Characteristic of the Pathfinder APXS sites: Implications for the composition of Martian rock and soils", Journal of Geophysical Research, (106)E7, 14, pp. 621-14,665.
- [7] Noe Dobrea E. Z., et al., 2006, "OMEGA analysis of light-toned outcrops in the Chaotic Terrain of the eastern Valles Marineris region". Lunar and Planetary Science XXXVII, Houston, TX, Abstr. 2068.
- [8] Wolff M. J., 2003, "Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations". Journal of Geophysical Research, 108, (E9) 5097, DOI:10.1029/2003JE002057.
- [9] Bandfield J. L., et al., 2000, "Spectral data set factor analysis and end-member recovery: Application to analysis of Martian atmospheric particulates". Journal of Geophysical Research, 105, (E4), pp. 9573-9587.
- [10] Smith M. D., et.al., 2000, "Separation of atmospheric and surface spectral features in Mars Global Surveyor (Thermal Emission Spectrometer) spectra" Journal of Geophysical Research, 105 (E4), pp. 9584-9607.
- [11] Bandfield J. L., 2003b, "Multiple emission angle surface-atmosphere separations of Thermal Emission Spectrometer data" Icarus, 161, pp. 47-65.
- [12] Bandlleld J. L., 2003a, "Spectroscopic Identification of Carbonate Minerals in the Martian Dust", Science, 301, pp. 1084-1086.
- [13] Zalewska N. E. and Wolkenberg R, 2008, "Mineralogical composition of the Martian surface on the basis of infrared spectroscopy. Martian phyllosilicates: recorders of aqueous processes", 7010.
- [14] Bolewski A., 1982, Petrografia, Wydawnictwa Geologiczne, Warszawa.
- [15] Hunt G. R., 1982, "Spectroscopic properties of rocks and minerals." Handbook of Physical Properties of Rocks, Vol. 1. (R. S. Carmichael,ed.), CRC Press, Boca Raton, Florida, pp. 295-385.
- [16] Salisbury J. W. and Waller L. S., 1989, "Thermal Infrared (2.5-13.5 urn) Spectroscopic Remote Sensing of Igneous Rock Types on Particulate Planetary Surfaces", Journal of Geophysical Research, 94,(B7), pp. 9192-9202.
- [17] Greenhagen B. T. and D. A. Paige, 2006, "Mapping Lunar Surface Petrology Using The Mid-Infrared Emissivity Maximum With The Lro Diviner Radiometer", Lunar and Planetary Science, XXXVII, 2406.
- [18] Bolewski A., 1990, Mineralogia szczegółowa, Wydawnictwa Geologiczne, Warszawa.
- [19] Boettger U., et al, 2012," Optimizing the detection of carotene in cyanobacteria in a martian regolith analogue with a Raman spectrometer for the ExoMars mission". Planetary and Space Science, 60, pp. 356-362.
- [20] Zalewska N. E., 2014, "Water in the Deepest Crater of Mars, Insights on Environmental Changes", GeoPlanet: Earthand Planetary Sciences. Springer, DOI: 10.1007/978-3-319-03683-0_5.
- [21] Zalewska (Andrzejewska) N. E., 2013, "Hellas Planitia as a potential site of sedimentary minerals." Planetary and Space Science. DOI: 10.1016/j.pss.2012.12.006i.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b6f9f5-439e-4fac-9c95-baf3cd8602d3