PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical finite element formulation of the 3D linear viscoelastic material model: Complex Poisson's ratio of bituminous mixtures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poisson's ratio in asphalt mixture is a time dependent (in time domain) or a complex frequency dependent quantity (in the frequency domain). This paper develops a 3D linear viscoelastic formulation in order to characterize the dynamic modulus (E*) and complex Poisson's ratio (v*) of mixtures. Under the hypothesis of isotropy, two complex moduli, the shear (G*) and bulk moduli (K*) are necessary to determine the dynamic Young's modulus and complex Poisson's ratio. The proposed model is implemented in the Cats3M finite element package. A systematic procedure for identifying the model parameters is discussed. Finally, the model is validated by comparing the model predictions with experimental data on asphalt mixture. This comparison shows that the presented constitutive model is able of predicting the 3D linear behaviour of asphalt mixtures.
Rocznik
Strony
1138--1148
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Groupe d’Etude des Matériaux Hétérogènes (GEMH), Equipe Génie Civil et Durabilité, Université de Limoges, Boulevard Jacques Derche, 19300 Egletons, France
autor
  • Groupe d’Etude des Matériaux Hétérogènes (GEMH), Equipe Génie Civil et Durabilité, Université de Limoges, Boulevard Jacques Derche, 19300 Egletons, France
autor
  • Groupe d’Etude des Matériaux Hétérogènes (GEMH), Equipe Génie Civil et Durabilité, Université de Limoges, Boulevard Jacques Derche, 19300 Egletons, France
autor
  • Groupe d’Etude des Matériaux Hétérogènes (GEMH), Equipe Génie Civil et Durabilité, Université de Limoges, Boulevard Jacques Derche, 19300 Egletons, France
autor
  • Groupe d’Etude des Matériaux Hétérogènes, Equipes Matériaux Minéraux de Grande Diffusion, Centre Européen de la Céramique, 12, rue Atlantis, 87068 Limoges, France
Bibliografia
  • [1] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980.
  • [2] G.D. Airey, B. Rahimzadeh, A. Collop, Viscoelastic linearity limits for bituminous materials, in: Proc. 6th International RILEM Symposium on Performance Testing and Evaluation of Bituminous Materials, Zurich, 2003.
  • [3] K. Charif, Contribution à l'étude du comportement mécanique du béton bitumineux en petites et grandes déformations, (PhD thesis), Ecole Centrale Paris, 1991.
  • [4] E. Doubbaneh, Comportement mécanique des enrobés bitumineux des petites aux grandes déformations, (PhD thesis), ENTPE Lyon, France, 1995.
  • [5] S. Kose, M. Guler, H. Bahia, E. Masad, Distribution of strains within hot-mix asphalt binders, Transportation Research Record: Journal of Transportation Research Board, Washington, DC 1728 (2000).
  • [6] N.W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction, Springer, Berlin, 1989.
  • [7] F. Olard, H. Di Benedetto, General '2S2P1D' model and relation between the linear viscoelastic behaviors of bituminous binders and mixes, International Journal of Road Materials and Pavement Design 4 (2) (2003).
  • [8] F. Olard, H. Di Benedetto, The 'DBN' model: a thermo-visco-elasto-plastic approach for pavement behavior modeling. Application to direct tension test and thermal stress restrained specimen test, Association of Asphalt Paving Technologists 74 (2005) 791–828.
  • [9] F. Olard, H. Di Benedetto, B. Eckmann, J.P. Triquigneaux, Linear viscoelastic properties of bituminous binders and mixtures at low and intermediate temperatures, International Journal of Road Materials and Pavement Design 4 (1) (2003) 185–224.
  • [10] H. Di Benedetto, F. Olard, C. Sauzeat, B. Delaporte, Linear viscoelastic behaviour of bituminous materials: from binders to mixes, International Journal of Road Materials and Pavement Design 5 (2004) 163–202 (special issue).
  • [11] H. Di Benedetto, B. Delaporte, C. Sauzeat, Three-dimensional linear behavior of bituminous materials: experiments and modeling, International Journal of Geomecanics 7 (2) (2007) 149–157.
  • [12] B. Delaporte, H. Di Benedetto, C. Sauzeat, P. Chaverot, Linear viscoelastic properties of mastics: results from a new annular shear rheometer, and modelling, in: Proc. Bearing Capacity of Roads Railways and Airfields Conf., Trondheim, 2005.
  • [13] E. Chailleux, C. De La Roche, J.M. Piau, Modeling of complex modulus of bituminous mixtures measured in tension/ compression to estimate secant modulus in indirect tensile test, Materials and Structures 44 (3) (2011) 641–657.
  • [14] A. Graziani, M. Bocci, F. Canestrari, Complex Poisson's ratio of bituminous mixtures: measurement and modeling, Materials and Structures 47 (7) (2013) 1131–1148.
  • [15] T. Pritz, Measurement methods of complex Poisson's ratio of viscoelastic materials, Applied Acoustics 60 (2000) 279–292.
  • [16] T.K. Pellinen, Complex modulus characterization of asphalt concrete, in: Y. Richard Kim (Ed.), Modeling of Asphalt Concrete, ASCE Press, New York, 2009.
  • [17] T.K. Pellinen, N.W. Witczak, Use of stiffness of hot-mix asphalt as a simple performance test, Transportation Research Record: Journal of Transportation Research Board 1789 (1) (2002) 80–90.
  • [18] S. Saadeh, E. Masad, K. Stuart, A. Abbas, T. Papagainnakis, G. Al-Khateeb, Comparative analysis of axial and shear moduli of asphalt mixes, Journal of Association of Asphalt Paving Technologists 72 (2003) 122–153.
  • [19] M. Witczak, K. Kaloush, T.K. Pellinen, M. El-Basyouny, H. Von Quintus, NCHRP Report 465: simple performance test for superpave mix design, in: Tech. rep., National Cooperative Highway Research Program, 2002.
  • [20] AASHTO, Provisional Standards TP7, American Association of State Highway Transportation Officials, Washington, 1995.
  • [21] A. Graziani, E. Bocci, F. Canestrari, Bulk and shear characterization of bituminous mixtures in the linear viscoelastic domain, Mechanics of Time-Dependent Materials 18 (2014) 1527–1554.
  • [22] J.T. Harvey, I. Guada, F. Long, Effect of material properties, specimen geometry, and specimen preparation variables on asphalt concrete tests for rutting. Pavement Research Center, University of California, Berkeley. Report to Office of Technology Applications, FHWA, 1999.
  • [23] F. Dubois, C. Chazal, C. Petit, A finite element analysis of creep-crack growth in viscoelastic media, Mechanics of Time-Dependent Materials 2 (1999) 269–286.
  • [24] J. Lai, A. Bakker, 3-D Schapery representation for non linear viscoelasticty and finite element implementation, Computational Mechanics 18 (1996) 182–191.
  • [25] CAST3M, Cast3M is a research FEM environment: its development is sponsored by the French Atomic Energy Commission, see web site: http://www-cast3m.cea.fr/.
  • [26] Salençon, Viscoélasticité, Presses de l'école nationale des Ponts et Chaussées, Paris, 1983.
  • [27] J. Mandel, Course of Continuum Mechanics, 1966.
  • [28] O.C. Zienkiewicz, The Finite Element Method, 3rd ed., McGraw-Hill, New York, 1977.
  • [29] R.M. Christensen, Theory of Viscoelasticity, Academic Press, London, 1982.
  • [30] N.W. Tschoegl, W. Knauss, I. Emri, Poisson's ratio in linear viscoelasticity – a critical review, Mechanics of Time- Dependent Materials 6 (1) (2002) 3–51.
  • [31] S.R. Lakes, A. Wineman, On Poisson's ratio in linearly viscoelastic solids, Journal of Elasticity 85 (1982) 45–63.
  • [32] S. Tiouajni, H. Di Benedetto, C. Sauzeat, S. Pouget, Approximation of a linear viscoelastic model by a generalized Kelvin-Voigt model or a generalized Maxwell model having N bodies: application to bituminous materials, International Journal of Road Materials and Pavement Design 12 (4) (2011) 897–930.
  • [33] N.W. Tschoegl, Time dependence in material properties: an overview, Mechanics of Time-Dependent Materials 1 (1997) 3–31.
  • [34] E. Chailleux, G. Ramond, C. Such, C. de la Roche, A mathematical-based master-curve construction method applied to complex modulus of bituminous materials, International Journal of Road Materials and Pavement Design, EATA (2006) 75–92.
  • [35] M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, Journal of the American Chemical Society 77 (14) (1955) 3701–3707.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b33dfc-fad1-4012-9203-c3a9d9859d19
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.