Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: FLASH radiotherapy involves delivering a dose of ultra-high-dose-rate ionising radiation (>40 Gy/s) in less than 200 ms, resulting in sparing healthy tissue and effectively destroying cancerous tissue. This article presents a preliminary verification of the feasibility of using real-time internal dosimetry at the sample surface to measure doses generated by the AQURE FLASH RT accelerator dedicated to FLASH radiotherapy studies. Material and Methods: The AQURE FLASH RT emits a 6 and 9 MeV electron beam with a dose rate higher than 40 Gy/s. The real-time dosimetry system to measure doses on the sample surface was implemented into the accelerator and consists of inductive sensors in which the moving electron charge induces a voltage in the secondary toroidal winding. The internal dosimetric system was preliminarily calibrated for single pulse irradiations using passive dosimetry methods, i.e. film and alanine dosimetry. Results: The study showed that there was no effect of the tested dosimetry system on the beam (PDD and beam profile). The linearity of the system’s response to successive pulses was tested and found to be <2% only for irradiation with two or more pulses. Therefore, a single pulse calibration of the system was performed to verify the applicability of the system for single pulse irradiation. The measurement results showed that the differences between the results obtained by the different methods were less than 2% for triode grid voltages below 30 V. Conclusion: The results confirmed the possibility of using the real-time dosimetry system to measure doses on the sample surface delivered by ultra-high dose rate beams at the AQURE FLASH RT accelerator. The system has been tested and validated over the full range of dose rates emitted by the accelerator to measure a dose in a single pulse. The results of the dosimetric measurements confirmed that the system did not affect the beam parameters.
Słowa kluczowe
Rocznik
Tom
Strony
300--304
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
- National Centre for Nuclear Research, Otwock-Świerk, Poland
autor
- National Centre for Nuclear Research, Otwock-Świerk, Poland
autor
- National Centre for Nuclear Research, Otwock-Świerk, Poland
autor
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
autor
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
autor
autor
- 0000-0001-7452-3638
autor
- National Centre for Nuclear Research, Otwock-Świerk, Poland
Bibliografia
- 1. Bourhis J, Montay-Gruel P, Gonçalves Jorge P, et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother Oncol. 2019;139:11-17. https://doi.org/10.1016/j.radonc.2019.04.008
- 2. Lin B, Gao F, Yang Y, et al. FLASH Radiotherapy: History and Future. Front Oncol. 2021;11:644400. https://doi.org/10.3389/fonc.2021.644400
- 3. Berry RJ, Hall EJ, Forster DW, Storr TH, Goodman MJ. Survival of mammalian cells exposed to X rays at ultra-high dose-rates. Br J Radiol. 1969;42(494):102-107. https://doi.org/10.1259/0007-1285-42-494-102
- 4. Favaudon V, Caplier L, Monceau V, et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci Transl Med. 2014;6(245). https://doi.org/10.1126/scitranslmed.3008973
- 5. Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra‐high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy. Med Phys. 2022;49(7):4912-4932. https://doi.org/10.1002/mp.15649
- 6. Calvo FA, Serrano J, Cambeiro M, et al. Intra-Operative Electron Radiation Therapy: An Update of the Evidence Collected in 40 Years to Search for Models for Electron-FLASH Studies. Cancers. 2022;14(15):3693. https://doi.org/10.3390/cancers14153693
- 7. Ashraf MR, Rahman M, Zhang R, et al. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. Front Phys. 2020;8:328. https://doi.org/10.3389/fphy.2020.00328
- 8. Yang Z, Vrielinck H, Jacobsohn LG, Smet PF, Poelman D. Passive Dosimeters for Radiation Dosimetry: Materials, Mechanisms, and Applications. Adv Funct Mater. Published online July 2024:2406186. https://doi.org/10.1002/adfm.202406186
- 9. Petersson K, Jaccard M, Germond J, et al. High dose‐per‐pulse electron beam dosimetry — A model to correct for the ion recombination in the Advanced Markus ionization chamber. Med Phys. 2017;44(3):1157-1167. https://doi.org/10.1002/mp.12111
- 10. Vojnovic B, Tullis IDC, Newman RG, Petersson K. Monitoring beam charge during FLASH irradiations. Front Phys. 2023;11:1185237. https://doi.org/10.3389/fphy.2023.1185237
- 11. Liu K, Palmiero A, Chopra N, et al. Dual beam‐current transformer design for monitoring and reporting of electron ultra‐high dose rate (FLASH) beam parameters. J Appl Clin Med Phys. 2023;24(2):e13891. https://doi.org/10.1002/acm2.13891
- 12. Misiarz A, Lenartowicz A, Adrich P, et al. Design and performance validation of a novel 3d printed thin-walled and transparent electron beam applicators for intraoperative radiation therapy with beam energy up to 12 MeV. Rep Pract Oncol Radiother. 2024;29(3):329-339. https://doi.org/10.5603/rpor.101092
- 13. IEC 60976 - Medical Electrical Equipment — Medical Electron Accelerators — Functional Performance Characteristics. International Electrotechnical Commission; 2007.
- 14. IEC 60977 - Medical Electrical Equipment – Medical Electron Accelerators – Guidelines for Functional Performance Characteristics. International Electrotechnical Commission; 2008.
- 15. Gryczka U, Zimek Z, Walo M, Chmielewska-Śmietanko D, Bułka S. Advanced Electron Beam (EB) Wastewater Treatment System with Low Background X-ray Intensity Generation. Appl Sci. 2021;11(23):11194. https://doi.org/10.3390/app112311194
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7b28a01-8d95-4b48-85e1-83b186c0b5c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.