PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cyanobacterial and microalgal bioactive compounds – the role of secondary metabolites in allelopathic interactions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Secondary metabolites produced by plants, algae, bacteria and fungi may affect the growth and development of biological systems. This is a natural process which occurs worldwide and is known as allelopathy. A relatively small number of these allelopathic compounds has been identified. The majority of studies describe the inhibitory effect of investigated compounds, extracts, cell-free filtrates and living cells on other organisms, although stimulatory interactions have also been noticed. Allelopathic interactions in aquatic environments could provide a competitive advantage to some species over other primary producers. Furthermore, allelopathy occurs in all aquatic habitats and all groups of autotrophs are capable of producing and releasing allelopathically active compounds. Moreover, secondary metabolites obtained from phytoplankton could demonstrate other useful bioactive properties. This review is intended to summarize the current knowledge of allelopathic interactions between microalgae and cyanobacteria in aquatic environments, as well as to provide a brief overview of the ecological importance of these interactions and their potential practical application in different branches of industry
Rocznik
Strony
131--143
Opis fizyczny
Bibliogr. 134 poz., tab., wykr.
Twórcy
autor
  • Institute of Oceanology Polish Academy of Sciences, Marine Chemistry and Biochemistry Department, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
  • Institute of Oceanology Polish Academy of Sciences, Marine Chemistry and Biochemistry Department, ul. Powstańców Warszawy 55, 81-712 Sopot, Poland
Bibliografia
  • [1]. Abarzua, S., Jakubowski, S., Eckert, S., Fuchs, P. (1999). Biotechnological investigation for the prevention of biofouling II. Blue-green algae as potential producers of biogenic agents for the growth inhibition of microfouling organisms. Bot. Mar. 42: 459-465.
  • [2]. Adiv, S., Ahronov-Nadborny, R., Carmeli, S. (2012). New aeruginazoles, a group of thiazole-containing cyclic peptides from Microcystis aeruginosa blooms. Tetrahedron 68: 1376-1383.
  • [3]. Arzul, G., Seguel, M., Guzman, L., Erard-Le Denn, E. (1999). Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology 232: 285-295.
  • [4]. Asari, N., Ishihara, R., Nakajima, Y., Kimura, M., Asakawa, S. (2008). Cyanobacterial communities of rice straw left on the soil surface of a paddy field. Biol. Fertil. Soils 44: 605-612.
  • [5]. Bagchi, S.N. & Marwah J.B. (1994). Production of an algicide from cyanobacterium Fischerella species which inhibits photosynthetic electron transport. Microbios 79: 187-193.
  • [6]. Berry, J.P., Gantar M., Gawley, R.E., Wang M., Rein K.S. (2004). Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comp. Biochem. Physiol. 139: 231-238.
  • [7]. Berry, J.P., Gantar, M., Perez, M.H., Berry, G., Noriega, F.G. (2008). Cyanobacterial Toxins as Allelochemicals with Potential Applications as Algaecides, Herbicides and Insecticides. Marine Drugs 6: 117-146.
  • [8]. Bhagavathy, S., Sumathi, P., Jancy Sherene Bell, I. (2011). Green algae Chlorococcum humicola-a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine S1-S7.
  • [9]. Bokesch, H.R., O’Keefe, B.R., McKee, T.C., Pannell, L.K., Patterson, G.M.L. et al. (2003). A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 42: 2578-2584.
  • [10]. Bonazzi, S., Barbaras, D., Patiny, L., Scopelliti, R., Schneider, P. et al. (2010). Antimalarial and antitubercular nostocarboline and eudistomin derivatives: Synthesis, in vitro and in vivo biological evaluation. Bioorg. Med. Chem. 18: 1464-1476.
  • [11]. Boyd, M.R., Gustafson, K.R., McMahon, J.B., Shoemaker, R.H., O’Keefe, B.R. et al. (1997). Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother. 41(7): 1521-30.
  • [12]. Boyd, M.R. (1999). Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides form the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J. Am. Chem. Soc. 121: 5899-5909.
  • [13]. Cembella, A. (2003). Chemical ecology of eukaryotic microalgae in marine ecosystems. Phycologia. 42: 420-447.
  • [14]. Chen, X., Smith, G.D., Waring, P. (2003). Human cancer cell (Jurkat) killing by the cyanobacterial metabolite calothrixin A. J. Appl. Phycol. 15: 269-277.
  • [15]. Choudhury, A.T.M.A., Kennedy, I.R. (2004). Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol. Fertil. Soils. 39: 219-227.
  • [16]. Davies-Coleman, M., Dzeha, T.M., Gray, C.A., Hess, S., Pannell, L.K., Hendricks, D.T. (2003). Isolation of homodolastatin 16, a new cyclic depsipeptide from a Kenyan collection of Lyngbya majuscula. J. Nat. Prod. 66: 712-715.
  • [17]. Dey, B., Lerner, D.L., Lusso, P., Boyd, M.R., Elder, J.H. et al. (2000). Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. J. Virol. 74: 4562-4569.
  • [18]. Doan, N.T., Rickards, R., Rothschild, J., Smith, G.D. (2000). Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix. J. Appl. Phycol. 12: 409-416.
  • [19]. Donner, G., Platt-Rouloff, L., Brümmer, E., Elbrächter, M. (2000). A calcium dependent allelopathic effect of the dinoflagellate Coolia monotis on the chlorophyceae Dunaliella salina. In: Abstracts, 9th International Conference on Harmful Algal Blooms, 7-11 February, Hobart, Tasmania, Australia, p. 112.
  • [20]. El-Sheekh, M. M., Dawah A. M., Abd El-Rahman A. M., El-Adel H. M., Abd El-Hay R. A. (2008). Antimicrobial activity of the cyanobacteria Anabaena wisconsinense and Oscillatoria curviceps against pathogens of fish in aquaculture. Annals of Microbiology 58(3): 527-534.
  • [21]. Fistarol, G.O., Legrand, C., Granéli, E. (2003). Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar. Ecol. Prog. Ser. 255: 115-125.
  • [22]. Fistarol, G.O., Legrand, C., Granéli, E. (2005). Allelopathic effect on a nutrient-limited phytoplankton species. Aquat. Microb. Ecol. 41: 153,161.
  • [23]. Flores, E. and Wolk, C.P. (1986). Production, by filamentous, nitrogen-fixing cyanobacteria, of a bacteriocin and of other antibiotics that kill related strains. Arch. Microbiol. 145: 215¬219.
  • [24]. Gantar, M., Berry, J.P., Thomas, S., Wang, M., Perez, R. et al. (2008). Allelopathic activity among Cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol. Ecol. 64(1): 55-64.
  • [25]. Gleason, F.K. and Paulson, J.L. (1984). Site of action of the natural algicide, cyanobacterin, in the bluegreen alga, Synechococcus sp. Arch. Microbiol. 138: 273-277.
  • [26]. Gniazdowska, A., Oracz, K., Bogatek, R. (2004). Allelopathy - new interpretations of plant - plant interactions. (In Polish, English summary). Kosmos 53(2): 207-217.
  • [27]. Grabowska, M. & Wołowski, K. (2014). Development of Trachelomonas species (Euglenophyta) during blooming of Planktothrix agardhii (Cyanoprokaryota). Ann. Limnol. - Int. J. Lim. 50: 49-57. DOI: 10.1051/limn/2013070.
  • [28]. Granéli, E., Johansson, N. (2003). Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N- or P-deficient conditions. Harmful Algae 2: 135¬145.
  • [29]. Granéli, E., Flynn, K. (2006). Chemical and physical factors influencing toxin content. In: E. Granéli & T.J. Turner (Eds.) Ecology of Harmful Algae. Ecological Studies Series 189, Springer-Verlag, Berlin and Heidelberg, pp. 229-241.
  • [30]. Gromov, B.V., Verpitskiy, A.A., Titova, N.N., Mamkayeva, K.A., Aleksandrova ,O.V (1991). Production of the antibiotic cyanobacterin LU-1 by Nostoc linckia CALU 892 (cyanobacterium). J. Appl. Phycol. 3: 55-60.
  • [31]. Gross, E.M., Wolk, C.P., Jüttner, F. (1991). Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella musciola. Journal of Phycology 27: 686-692.
  • [32]. Gross, E.M. (2003). Allelopathy of aquatic autotrophs. Plant Science 22: 313-339.
  • [33]. Harada, K.-I., Suomalainen, M., Uchida, H., Masul, H., Ohmura, K. et al. (2000). Insecticidal compounds against mosquito larvae from Oscillatoria agardhii strain 27. Environ Toxicol. 15: 114-9.
  • [34]. Hasui, M., Matsuda, M., Okutani, K., Shigeta, S. (1995). In vitro antiviral activities of sulfated polysaccharides from a marine microalga (Cochlodinium polykrikoides) against human immunodeficiency virus and other enveloped viruses. Int. J. Biol. Macromol. 17: 293-297.
  • [35]. Hayashi, K., Hayashi, T., Kojima, I.A. (1996). Natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis: in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Res. Hum. Retrovir. 12: 1463-71.
  • [36]. Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakhant, A. et al. (2003). Bioactivities of Nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169. Journal of Bioscience and Bioengineering 95(5): 512-517.
  • [37]. Hirata, K., Yoshitomi, S., Dwi, S., Iwabe, O., Mahakant, A. et al. (2004). Generation of reactive oxygen species undergoing redox cycle of nostocine A: a cytotoxic violet pigment produced by freshwater cyanobacterium Nostoc spongiaeforme. Journal of Biotechnology 110: 29-35.
  • [38]. Hu, Z., Liu, Y., Li, D., Dauta, A. (2005). Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia 534: 23-29. Igarashi, T., Aritake, S., Yasumoto, T. (1998). Biological activities of prymnesin-2 isolated from a red tide alga Prymnesium parvum. Natural Toxins 6: 35-41.
  • [39]. International Allelopathy Society (1996). First world congress on allelopathy. A science for the future.
  • [40]. Ishida, K. & Murakami, M. (2000). Kasumigamide, an antialgal peptide from the cyanobacterium Microcystis aeruginosa. J. Org. Chem. 65: 5898-5900.
  • [41]. Ishida, K., Matsuda, H., Okita, Y., Murakami, M. (2002). Aeruginoguanidines 98-A-98-C: cytotoxic unusual peptides from the cyanobacterium Microcystis aeruginosa. Tetrahedron 58: 7645-7652.
  • [42]. Issa A.A. (1999). Antibiotic production by the cyanobacteria Oscillatoria angustissima and Calothrix parietina. Environmental Toxicology and Pharmacology 8: 33-37.
  • [43]. Jaki, B., Orjala, J., Heilmann, J., Linden, A., Vogler, B. et al. (2000).Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune. J. Nat. Prod. 63: 339-343.
  • [44]. Jang, M.-H., Ha, K., Takamura, N. (2007). Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon. 49: 727-733.
  • [45]. Jüttner, F. & Wu, J.-T. (2000). Evidence of allelochemical activity in subtropical cyanobacterial biofilms of Taiwan. Arch. Hydrobiol. 147: 505-517.
  • [46]. Jüttner, F., Todorova, A.K., Walch, N., von Philipsborn, W (2001).Nostocyclamide M: a cyanobacterial cyclic peptide with allelopathic activity from Nostoc 31. Phytochemistry 57: 613-619.
  • [47]. Kaebernick, M. & Neilan, B.A. (2001) Ecological and molecular investigations of cyanotoxin production. - FEMS Microbiol. Ecol. 35: 1-9.
  • [48]. Kang, H., Krunic, A., Shen, Q., Swanson, S.M., Orjala, J. (2011). Minutissamides A-D, antiproliferative cyclic decapeptides from the cultured cyanobacterium Anabaena minutissima. J. Nat. Prod. 74: 1597-1605.
  • [49]. Kaya, K., Mahakhant, A., Keovara, L., Sano, T., Kubo, T.et al. (2002). Spiroidesin, a novel lipopeptide from the cyanobacterium Anabaena spiroides that inhibits cell growth of the cyanobacterium Microcystis aeruginosa. J. Nat. Prod. 65: 920-921.
  • [50]. Kearns, K.D. & Hunter M.D. (2001). Toxinproducing Anabaena flos-aquae induces settling of Chlamydomonas reinhardtii, a competing motile alga. Microb. Ecol. 42: 80-86.
  • [51]. Keating, K.I. (1977). Allelopathic influence on bluegreen bloom sequence in a eutrophic lake. Science 196: 885-887.
  • [52]. Keating, K.I. (1978). Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199: 971-973.
  • [53]. Kreitlow, S., Mundt, S., Lindequist, U. (1999). Cyanobacteria a potential source of new biologically active substances. Journal of Biotechnology 70: 61-63.
  • [54]. Laabir, M., Grignon-Dubois, M., Masseret, E., Rezzonico, B., Soteras, G. et al. (2013). Algicidal effects of Zostera marina L. and Zostera noltii Hornem. Extracts on the neuro-toxic bloom-forning dinoflagellate Alexandrium catenella. Aquatic Botany 111: 16-25.
  • [55]. Larsen, L.K., Moore, R.E., Patterson, G.M.L. (1994). b-Carbolines from the bluegreen alga Dichothrix baueriana. J. Nat. Prod. 57: 419-421.
  • [56]. Leflaive, J. & Ten-Hage, L. (2007). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199-214.
  • [57]. Legrand, C., Reigefors, K., Fistarol, G.O., Graneli, E. (2003). Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406-419.
  • [58]. Li, J., Glibert, P.M., Alexander, J.A., Molina, M.E. (2012). Growth and competition of several harmful dinoflagellates under different nutrient and light conditions. Harmful Algae 13: 112-125.
  • [59]. Liang, J., Moore, R.E., Moher, E.D., Munroe, J.E., Al-awar, R.S. et al. (2005). Cryptophycins-309, 249 and other cryptophycin analogs: Preclinical efficacy studies with mouse and human tumors. Investigational New Drugs 23: 213-224.
  • [60]. Linington, R.G., Gonzalez, J., Urena, L.-D., Romero, L.I., Ortega- Barria, E. et al. (2007). Venturamides A and B: antimalarial constituents of the Panamanian marine cyanobacterium Oscillatoria sp. J. Nat. Prod. 70: 397-401.
  • [61]. Linington, R.G., Clark, B.R., Trimble, E.E., Almanza, A., Urena, L.-D. et al. (2009). Antimalarial Peptides from Marine Cyanobacteria: Isolation and Structural Elucidation of Gallinamide A. J. Nat. Prod. 72(1): 14-17. DOI: 10.1021/ np8003529.
  • [62]. Liu, Y., Song, L., Li, X., Liu, T. (2002). The toxic effects of microcystin-LR on embryo- larval and juvenile development of loach, Misguruns mizolepis Gunthe. Toxicon 40: 395-399.
  • [63]. Liu, Y., Li, F., Huang, Q. (2013). Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia. Journal of Environmental Sciences 25(4): 776-784.
  • [64]. Luesch, H., Yoshida, W.Y., Moore, R.E., Paul, V.J., Mooberry, S.L. et al. (2002). Symplostatin 3, a new dolastatin 10 analogue from the marine cyanobacterium Symploca sp. VP452. J. Nat. Prod. 65: 16-20.
  • [65]. Ma, H., Krock, B., Tillmann, U., Bickmeyer, U., Graeve, M. et al. (2011). Mode of action of membrane-disruptive lytic compoundsfrom the marine dinoflagellate Alexandrium tamarense. Toxicon 58: 247-258.
  • [66]. Macias, F.A., Galindo, J.L.G., Garcia-Diaz, M.D., Galindo, J.C.G. (2008). Allelopathic agents from aquatic ecosystems: potential biopesticides models. Phytochem. Rev. 7: 155-178.
  • [67]. Mason, C.P., Edwards, K. R., Carlson, R. E., Pignatello, J., Gleason, F.K. et al. (1982). Isolation of chlorine-containing antibiotic from the freshwater cyanobacterium Scytonema hofmanni. Science 215: 400-402.
  • [68]. McPhail, K.L., Correa, J., Linington, R.G., Gonzalez, J., Ortega- Barria, E. et al. (2007). Antimalarial linear lipopeptides from a Panamanian strain of the marine cyanobacterium Lyngbya majuscule. J. Nat. Prod. 70: 984-988.
  • [69]. Mo, S., Krunic, A., Pegan, S.D., Franzblau, S.G., Orjala, J. (2009). An antimicrobial guanidine-bearing sesterterpene from the cultured cyanobacterium Scytonema sp. J. Nat. Prod. 72: 2043-2045.
  • [70]. Mo, S., Krunic, A., Santarsiero, B.D., Franzblau, S.G., Orjala, J. (2010). Hapalindolerelated alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry 1: 2116-2123.
  • [71]. Mohamed, Z.A. (2013). Toxic effect of norharmane on a freshwater plankton community. Ecohydrology & Hydrobiology 13: 226-232.
  • [72]. Molish, H. (1937). Der Einfluss einer Pflanze auf die andere: Allelopathie. Fisher Verlag, Jena 106 pp. (In German).
  • [73]. Moon, S., Chen, J.L., Moore, R.E., Patterson, G.M.L. (1992). Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J. Org. Chem. 57: 1097-1103.
  • [74]. Moore, R.E., Cheuk, C., Patterson, G.M.L. (1984). Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis. J. Am. Chem. Soc. 106: 6456-6457.
  • [75]. Mulderij, G., van Donk, E., Roelofs, G.M. (2003). Differential sensitivity of green algae to allelopathic substances from Chara. Hydrobiologia 491: 261-271.
  • [76]. Mulderij, G., Mooij, W.M., Smolders, A.J.P., van Donk, E. (2005). Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany 82: 284-296.
  • [77]. Mulderij, G., Mau, B., van Donk, E., Gross, E.M. (2007). Allelopathic activity of Stratiotes aloides on phytoplankton towards identification of allelopathic substances. Hydrobiologia 584: 89-100.
  • [78]. Myklestad, S.M., Ramlo, B., Hestmann, S. (1995). Demonstration of strong interaction between the flagellate Chrysochromulina polylepis (Prymnesiophyceae) and a marine diatom. In: P. Lassus, G. Arzul, E. Erard-Le Denn et al. (Eds), Harmful Marine Algal Blooms (pp. 633-638). Lavoisier, Intercept Ltd.
  • [79]. Nan, C., Zhang, H., Lin, S., Zhao, G., Liu, X. (2008). Allelopathic effects of Ulva lactuca on selected species of harmful bloom- forming microalgae in laboratory cultures. Aquatic Botany 89: 9-15.
  • [80]. Neuhof, T., Schmieder, P., Preussel, K., Dieckmann, R., Pham, H. et al. (2005). Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J. Nat. Prod. 68: 695-700.
  • [81]. Obana, S., Miyamoto, K., Morita, S., Ohmori, M. et al. (2007). Effect of Nostoc sp. On soil characteristics, plant growth and nutrient up take. J. Appl. Phycol. 19: 641-646.
  • [82]. Qian, H., Xu, X., Chen, W., Jiang, H., Jin, Y. et al. (2009). Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere 75(3): 368-75. DOI:10.1016/j.chemosphere.2008.12.040.
  • [83]. Pflugmacher, S. (2002). Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. 17(4): 407-413.
  • [84]. Pouvreau, J.-B., Housson, E., Le Tallec, L., Morançais, M., Rincé, Y. et al. (2007). Growth inhibition of several marine diatom species induced by the shading effect and allelopathic activity of marennine, a blue-green polyphenolic pigment of the diatom Haslea ostrearia (Gaillon/Bory) Simonsen. Journal of Experimental Marine Biology and Ecology 352: 212-225.
  • [85]. Prakash, J.W., Antonisamy, J.M., Jeeva, S. (2011). Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine 1 (Suppl. 2): S170-S173.
  • [86]. Pratt, D.M., Fong, J. (1940). Studies on Chlorella vulgaris. II. Further evidence that Chlorella cells form a growth- inhibiting substance. American Journal of Botany 27: 431¬436.
  • [87]. Rao, D.R., Thangavel, C., Kabilan, L., Suguna, S., Mani, T.R., Shanmugasundaram S. (1999). Larvicidal properties of the cyanobacterium Westiellopsis sp. against mosquito vectors. Trans. Royal Soc. Trop. Med. Hyg. 93: 232.
  • [88]. Raveh, A. & Carmeli, S. (2007). Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. J. Nat. Prod. 70: 196-201.
  • [89]. Raveh, A. & Carmeli, S. (2010). Aeruginazole A, a novel thiazole-containing cyclopeptide from the cyanobacterium Microcystis sp. Org. Lett. 12: 3536-3539.
  • [90]. Reigosa, M.J., Sanchez-Moreiras, A., Gonzalez, L. (1999). Ecophysiological approach in allelopathy. Crit. Rev. Plant Sci. 18: 577-608.
  • [91]. Rice, E.L. (1984). Allelopathy, 2nd ed. Academic Press, Orlando, FL, 423 p.
  • [92]. Rohrlack, T., Henning, M., & Kohl, J.G. (2001). Isolation and characterization of colonyforming Microcystis aeruginosa strains. In: I. Chorus (Ed.), Cyanotoxins - Occurrence, Causes, Consequences (pp. 152-158). Springer-Verlag, Berlin.
  • [93]. Roy, S. (2009). Do phytoplankton communities evolve through a self-regulatory abundance-diversity relationship? BioSystems 95: 160-165.
  • [94]. Rzymski, P., Poniedziałek, B., Kokociński, M., Jurczak, T., Lipski, D. et al. (2014). Interspecific allelopathy in cyanobacteria: Cylindrospermopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism of Microcystis aeruginosa. Harmful Algae 35: 1-8.
  • [95]. Saqrane, S., El Ghazali, I., Ouahid, Y., El Hassni, M., El Hadrami, et al. (2007). Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: Microcystin accumulation, detoxication and oxidative stress induction. Aquatic Toxicology 83: 284-294.
  • [96]. Schmitt, T.M., Hay, M.E., O’Brien, A.D. (1999). Bacterial toxins: friends or foes? Emerging Infectious Diseases 5(2): 1-6.
  • [97]. Scholz, B. & Liebezeit, G. (2012). Screening for biological activities and toxicological effects of 63 phytoplankton species isolated from freshwater, marine and brackish water habitats. Harmful Algae 20: 58-70.
  • [98]. Shanab, S.M.M., Mostafa, S.S.M., Shalaby, E.A., Mahmoud, G.I. (2012). Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pacific Journal of Tropical Biomedicine 608-615.
  • [99]. Singh, D.P., Tyagi, M.B., Kumar, A., Thakur, J.K., Kumar, A., (2001). Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World Journal of Microbiology & Biotechnology 17: 15-22.
  • [100]. Sinha, S.K., Verma, D.C., Dwivedi, C.P. (2002). Role of green manure (Sesbania rostrata) and biofertilizers (Blue-green algae and Azotobacter) in rice-wheat cropping system in state of Uttar Pradesh, India. Physiol. Mol. Biol. Plants 8: 105-110.
  • [101]. Skovgaard, A., Legrand, C., Hansen, P.J., Granéli, E. (2003). Effects of nutrient limitation on food uptake in the toxic haptophyte Prymnesium parvum. Aquat. Microb. Ecol. 31: 259-265.
  • [102]. Srivastava, A., Juttner, F., Strasser, R.J. (1998). Action of the allelochemical fischerellin A on photosystem. Biochimica et Biophusica Acta 1364: 326-336.
  • [103]. Sturdy, M., Krunic, A., Cho, S., Franzblau, S., Orjala, J. (2010). Eucapsitrione, an anti-Mycobacterium tuberculosis anthraquinone derivative from the cultured freshwater cyanobacterium Eucapsis sp. J. Nat. Prod. 73: 1441-1443.
  • [104]. Sugg, L.M. & van Dolah F.M. (1999). No evidence for an allelopathic role of okadaic acid among ciguateraassociated dinoflagellates, J. Phycol. 35: 93-103.
  • [105]. Sukenik, A., Eskhol, R., Livne, A., Hadas, O., Rom, M. et al. (2002). Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): A novel Allelopathic mechanism. Limnology and Oceanography 47(6): 1656-1663.
  • [106]. Svircev, Z., Cetojevic-Simin, D., Simeunovic, J., Karaman, M. & Stojanovic, D. (2008). Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia. Sci. China Ser. C-Life Sci. 51(10): 941-947.
  • [107]. Tameishi, M., Yamasaki, Y., Nagasoe, S., Shimasaki, Y., Oshima, Y. et al. (2009). Allelopathic effects of the dinophyte Prorocentrum minimum on the growth of the bacillariophyte Skeletonema costatum. Harmful Algae 8: 421-429.
  • [108]. Tan, L.T. (2007). Bioactive natural products from marine cyanobacteria for drug discovery. Phytochemistry 68: 954-979.
  • [109]. Thornburg, C.C., Cowley, E.S., Sikorska, J. (2013). Apratoxin H and apratoxin A sulfoxide from the Red Sea cyanobacterium Moorea producens. J. Nat. Prod. 76: 1781-1788.
  • [110]. Tillmann, U., Alpermann ,T., John, U., Cembella, A. (2008). Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae 7: 52-64.
  • [111]. Toporowska, M., Pawlik-Skowrońska, B., Kalinowska, R. (2014). Accumulation and effects of cyanobacterial microcystins and anatoxin-a on benthic larvae of Chironomus spp. (Diptera: Chironomidae). Eur. J. Entomol. 111(1): 83-90. DOI: 10.14411/eje.2014.010.
  • [112]. Tripathi, A., Puddick, J., Prinsep, M.R., Rottmann, M., Tan, L.T. (2010). Lagunamides A and B: cytotoxic and antimalarial cyclodepsipeptides from the marine cyanobacterium Lyngbya majuscula. J. Nat. Prod. 29;73(11): 1810-4. DOI: 10.1021/np100442x.
  • [113]. Tüney, U., Çadirci, H.B., Ünal, D., Sukatar, A. (2006). Antimicrobial Activities of the Extracts of Marine Algae from the Coast of Urla (Üzmir, Turkey) Turk. J. Biol. 30: 171¬175.
  • [114]. Uchida, T., Yamaguchi, M., Matsuyama, Y., Honjo, T. (1995). The red tide dinoflagellate Heterocapsa sp. kills Gyrodinium instriatum by cell contact. Mar. Ecol. Prog. Ser. 118: 301-303.
  • [115]. Valdor, R., Aboal, M. (2007). Effects of living cyanobacteria, cyanobacterial extracts and pure microcystins on growth and ultrastructure of microalgae and bacteria. Toxicon 49: 769-779.
  • [116]. Vardi, A., Berman-Frank, I., Rozenberg, T., Hadas, O., Kaplan, A. et al. (1999). Programmed cell death of the dinoflagellate Peridinium gatunense is mediated by CO2 limitation and oxidative stress. Curr. Biol. 9: 1061-1064.
  • [117]. Vardi, A., Schatz, D., Beeri, K., Motro, U., Sukenik, A. et al. (2002). Dinoflagellate-cyanobacterium communication may determine the composition of phytoplankton assemblage in a mesotrophic lake. Curr. Biol. 12: 1767-1772.
  • [118]. Vasconcelos, M.T.S.D., Leal, M.F.C. (2008). Exudates of different marine algae promote growth and mediate trace metal binding in Phaeodactylum tricornutum. Marine Environmental Research 66: 499-507.
  • [119]. Verdier-Pinard, P., Lai, J.-Y., Yoo, H.-D., Yu, J., Marquez, B. et al. (1998). Structure-Activity Analysis of the Interaction of Curacin A, the Potent Colchicine Site Antimitotic Agent, with Tubulin and Effects of Analogs on the Growth of MCF- 7 Breast Cancer Cells. Mol. Pharmacol. 53(1): 62-76.
  • [120]. Volk, R.-B. (2005). Screening of microalgal culture media for the presence of algicidal compounds and isolation of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J. Appl. Phycol. 17: 339-347.
  • [121]. Volk, R.-B. & Furkert, F.H. (2006). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161: 180-186.
  • [122]. Vyvyan, J.R. (2002). Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 58: 1631-1646.
  • [123]. Wang, Y., Yu, Z., Song, X., Zhang, S. (2006). Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research 56: 17-26.
  • [124]. Wang, R., Xiao, H., Wang, Y., Zhou, W., Tang, X. (2007). Effects of three macroalgae, Ulva linza (Chlorophyta), Corallina pilulifera (Rhodophyta) and Sargassum thunbergii (Phaeophyta) on the growth of the red tide microalga Prorocentrum donghaiense under laboratory conditions. Journal of Sea Research 58: 189-197.
  • [125]. Wiegand, C., Pflugmacher, S. (2004). Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicology and Applied Pharmacology 203: 201- 218.
  • [126]. Winder, J.S., Canneli, R.J.P., Walker, J.M., Delbarre, S., Francisco, C. et al. (1989). Glycosidase inhibitors from algae. Biochem. Soc. T. 17: 1030-1031.
  • [127]. Wolfe, G.V. (2000). The chemical defence ecology of marine unicellular plankton: constraints, mechanisms and impacts. Biological Bulletin 198: 225-244.
  • [128]. Yasuhara-Bell, J. & Lu, Y. (2010). Marine compounds and their antiviral activities. Antiviral Research 86: 231-240.
  • [129]. Yasumoto, T., Underdal, B., Aune, T., Hormazabal, V., Skulberg, O.M. et al. (1990). Screening for haemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norewegian coastal waters. In E. Granéli, B. Sunderström, L. Edler, D.M. Anderson (Eds.), Toxic marine phytoplankton (pp. 436-440).
  • [130]. Zaccaro, M.C., Salazar, C., De Caire, G.Z., De Cano, M.S., Stella, A.M. (2001). Lead toxicity in cyanobacterial porphyrin metabolism. Environ Toxicol Water Qual 16: 61-67.
  • [131]. Zainuddin, E.N., Mentel, R., Wray, V., Jansen, R., Nimtz, M. et al. (2007). Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. J. Nat. Prod. 70: 1084-1088.
  • [132]. Zhongqiang, L., Yu, D., Manghui, T. (2005). Seed germination of three species of Vallisneria (Hydrocharitaceae) and the effects of freshwater microalgae. Hydrobiologia 544: 11-18.
  • [133]. Żak, A., Musiewicz, K., Kosakowska, A. (2012). Allelopathic activity of the Baltic cyanobacteria against microalgae. Estuarine, Coastal and Shelf Science 112: 4-10. DOI: doi:10.1016/j.ecss.2011.10.007.
  • [134]. Żak, A. & Kosakowska A. (2014). Allelopathic Influence of Cyanobacteria Microcystis aeruginosa on Green Algae Chlorella vulgaris. Insights on Environmental Changes, GeoPlanet: Earth and Planetary Sciences 141-150. DOI: 10.1007/978-3-319-03683-0_10.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7ad6411-d150-413a-b4e2-6cf1bc268f8f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.