PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prospects for the production of radioisotopes and radiobioconjugates for theranostics

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The development of diagnostic methods in medicine as well as the progress in the synthesis of biologically active compounds allows the use of selected radioisotopes for the simultaneous diagnosis and treatment of diseases, especially cancerous ones, in patients. This approach is called theranostic. This review article includes chemical and physical characterization of chosen theranostic radioisotopes and their compounds that are or could be useful in nuclear medicine.
Rocznik
Strony
241--257
Opis fizyczny
Bibliogr. 144 poz., rys., tab.
Twórcy
  • Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland
  • Institute of Nuclear Chemistry and Technology, Warsaw, Poland
Bibliografia
  • 1. Yordanova A, Eppard E, Kürpig S, Bundschuh RA, Schönberger S, Gonzalez-Carmona M, et al. Theranostics in nuclear medicine practice. OncoTargets Ther 2017;10:4821-8.
  • 2. Gottschalk A, McCormack KR, Adams JE, Anger HO. A comparison of results of brain scanning using Ga68-EDTA and the positron scintillation camera, with Hg203-neohydrin and the conventional focused collimator scanner. Radiology 1965;84:502-6.
  • 3. Chakravarty R, Chakraborty S, Ram R, Vatsa R, Bhusari P, Shukla J, et al. Detailed evaluation of different 68Ge/68Ga generators: an attempt toward achieving efficient 68Ga radiopharmacy. J Label Compd Radiopharm 2015;59:87-94.
  • 4. Van der Meulen NP, Dolley SG, Steyn GF, van der Walt TN, Raubenheimer HG. The use of selective volatilization in the separation of 68Ge from irradiated Ga targets. Appl Radiat Isot 2011;69:727-31.
  • 5. Rösch F. Maturation of a key resource - the germanium-68/gallium-68 generator: development and new insights. Curr Rad 2012;5:202-11.
  • 6. Abbasi AA, Easwaramoorthy B. Method and system for producing gallium-68 radioisotope by solid targeting in a cyclotron. Patent WO2016197084A1, 2016.
  • 7. Alnahwi A, Tremblay S, Ait-Mohand S, Beaudoin J-F, Guerin B. Large-scale routine production of 68Ga using 68Zn-pressed target. J Nucl Med 2019;60:109014.
  • 8. Oehlke E, Hoehr C, Hou X, Hanemaayer V, Zeisler S, Adam MJ, et al. Production of Y-86 and other radiometals for research purposes using a solution target system. Nucl Med Biol 2015;42: 842-9.
  • 9. Alves V, do Carmo S, Alves F, Abrunhosa A. Automated purification of radiometals produced by liquid targets. Instruments 2018;2:17.
  • 10. Jensen M, Clark J. Direct production of Ga-68 from bombardment of concentrated aqueous solutions of [Zn-68] zinc chloride. In: Proceedings of the 13th international workshop on targetry and target chemistry. Riso National Laboratory for Sustainable Energy, Roskilde, Denmark; 2011: 288-90 pp.
  • 11. Pandey MK, Byrne JF, Schlasner KN, Schmit NR, DeGrado TR. Cyclotron production of 68Ga in a liquid target: effects of solution composition and irradiation parameters. Nucl Med Biol 2019; 74-75:49-55.
  • 12. Pagani M, Stone-Elander S, Larsson S. Alternative positron emission tomography with non-conventional positron emitters: effects of their physical properties on image quality and potential clinical applications. Eur J Nucl Med 1997;24:1301-27.
  • 13. Kilian K. 68Ga-DOTA and analogs: current status and future perspectives. Rep Practical Oncol Radiother 2014;19:S13-21.
  • 14. Notni J, Hermann P, Havlickova J, Kotek J, Kubicek V, Plutnar J, et al. A triazacyclononane-based bifunctional phosphinate ligand for the preparation of multimeric 68Ga tracers for positron emission tomography. Chemistry 2010;16:7174-85.
  • 15. Notni J, Plutnar J, Wester HJ. Bone-seeking TRAP conjugates: surprising observations and their implications on the development of gallium-68-labeled bisphosphonates. EJNMMI Res 2012;2:13.
  • 16. Notni J, Pohle K, Wester HJ. Comparative gallium-68 labeling of TRAP-, NOTA-, and DOTA-peptides: practical consequences for the future of gallium-68-PET. EJNMMI Res 2012;2:28.
  • 17. Połosak M, Piotrowska A, Krajewski S, Bilewicz A. Stability of 47Sc-complexes with acyclic polyamino-polycarboxylate ligands. J Radioanal Nucl Chem 2013;295:1867-72.
  • 18. Raj N, Reidy-Lagunes D. The Role of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography in welldifferentiated neuroendocrine tumors: a case-based approach illustrates potential benefits and challenges. Pancreas 2018;47: 1-5.
  • 19. Hennrich U, Benešová M. [68Ga]Ga-DOTA-TOC: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging. Pharmaceuticals 2020;13:38.
  • 20. Poeppel TD, Binse I, Petersenn S, Lahner H, Schott M, Antoch G, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med 2011;52: 1864-70.
  • 21. Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of 68GaDOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005;46:763-9.
  • 22. Syed M. Qaim, Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 2019;322: 1257-66.
  • 23. Bartold SP, Donohoe KJ, Fletcher JW, Haynie TP, Henkin RE, Silberstein EB, et al. Procedure guideline for gallium scintigraphy in the evaluation of malignant disease. Society of Nuclear Medicine. J Nucl Med 1997;38:990-4.
  • 24. Ziessman H, O’Malley J, Thrall J. Nuclear medicine, 3rd ed. The requisites in radiology chapter 1 – radiopharmaceuticals; Philadelphia: Mosby; 2006:3-19 pp.
  • 25. Othman MF, Mitry NR, Lewington VJ, Blower PJ, Terry SY. Reassessing gallium-67 as a therapeutic radionuclide. Nucl Med Biol 2017;46:12-8.
  • 26. Watanabe N, Nakanishi Y, Kinukawa N, Ohni S, Obana Y, Nakazawa A, et al. Expressions of somatostatin receptor subtypes (SSTR-1, 2, 3, 4 and 5) in neuroblastic tumors; special reference to clinicopathological correlations with international neuroblastoma pathology classification and outcomes. Acta Histochem Cytoc 2014;47:219-29.
  • 27. Majkowska-Pilip A, Bilewicz A. Macrocyclic complexes of scandium radionuclides as precursors for diagnostic and therapeutic radiopharmaceuticals. J Inorg Biochem 2011;105: 313.
  • 28. Walczak R, Krajewski S, Szkliniarz K, Sitarz M, Abbas K, Choiński J, et al. Cyclotron production of 43Sc for PET imaging. EJNMMI Phys 2015;2:33.
  • 29. Szkliniarz K, Jastrzębski J, Bilewicz A, Chajduk E, Choiński J, Jakubowski A, et al. Medical radioisotopes produced using the alpha particle beam from the Warsaw heavy Ion cyclotron. Acta Phys Pol, A 2015;127:1471-4.
  • 30. Szkliniarz K, Sitarz M, Walczak R, Jastrzębski J, Bilewicz A, Choiński J, et al. Production of medical Sc radioisotopes with an alpha particle beam. Appl Radiat Isot 2016;118:182-9.
  • 31. Minegishi K, Nagatsu K, Fukada M, Suzuki H, Ohya T, Zhang MR. Production of scandium-43 and -47 from a powdery calcium oxide target via the nat/44Ca(α,x)-channel. Appl Radiat Isot 2016; 116:8-12.
  • 32. Domnanich KA, Eichler R, Muller C, Jordi S, Yakusheva V, Braccini S, et al. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharm Chem 2017;2:14.
  • 33. Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. Br J Radiol 2018;91:20180074.
  • 34. Roesch F. Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Curr Rad 2012;5:187-201.
  • 35. Alliot C, Audouin N, Barbet J, Bonraisin AC, Bossé V, Bourdeau C, et al. Is there an interest to use deuteron beams to produce nonconventional radionuclides? Front Med 2015;11:31.
  • 36. Duchemin C, Guertin A, Haddad F, Michel N, Métivier V. Corrigendum: production of scandium-44m and scandium-44g with deuterons on calcium-44: cross section measurements and production yield calculations. Phys Med Biol 2015;60:6847-64.
  • 37. Moskal P, Stępień EŁ. Prospects and clinical perspectives of total-body PET imaging using plastic scintillators. Pet Clin 2020; 15:439-52.
  • 38. Moskal P, Kisielewska D, Shopa YR, Bura Z, Chhokar J, Curceanu C, et al. Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Phys 2020;7:44.
  • 39. Moskal P, Kisielewska D, Curceanu C, Czerwiński E, Dulski K, Gajos A, et al. Feasibility study of the positronium imaging with the J-PET tomograph. Phys Med Biol 2019;64:055017.
  • 40. Moskal P, Jasińska B, Stępień EŁ, Bass SD. Positronium in medicine and biology. Nat Rev Phys 2019;1:527-9.
  • 41. Severin GW, Engle JW, Valdovinos HF, Barnhart TE, Nickles RJ. Cyclotron produced 44gSc from natural calcium. Appl Radiat Isot 2012;70:1526-30.
  • 42. Sitarz M, Szkliniarz K, Jastrzębski J, Choiński J, Guertin A, Haddad F, et al. Production of Sc medical radioisotopes with proton and deuteron beams. Appl Radiat Isot 2018;142:104-12.
  • 43. Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonell F, Holzwarth U, et al. Cyclotron production of 44Sc for clinical application. Radiochim Acta 2013;101:333.
  • 44. Pruszyński M, Majkowska-Pilip A, Loktionova NS, Eppard E, Roesch F. Radiolabeling of DOTATOC with the long-lived positron emitter 44Sc. Appl Radiat Isot 2012;70:974-9.
  • 45. Kilian K, Cheda Ł, Sitarz M, Szkliniarz K, Choiński J, Stolarz A. Separation of 44Sc from natural calcium carbonate targets for synthesis of 44Sc-DOTATATE. Molecules 2018;23:1787.
  • 46. Carzaniga TS, Braccini S. Cross-section measurement of 44mSc,47Sc, 48Sc and 47Ca for an optimized 47Sc production with an 18 MeV medical PET cyclotron. Appl Radiat Isot 2019;143: 18-23.
  • 47. Müller C, Bunka M, Haller S, Köster U, Groehn V, Bernhardt P, et al. Promising prospects for 44Sc-/47Sc-based theranostics: application of 47Sc for radionuclide tumor therapy in mice. J Nucl Med 2014;55:1658-64.
  • 48. Domnanich KA, Muller C, Benešova M, Dressler R, Haller S, Köster U, et al. 47Sc as useful β-emitter for the radiotheragnostic paradigm: a comparative study of feasible production routes. EJNMMI Radiopharm Chem 2017;2:5.
  • 49. Rane S, Harris JT, Starovoitova VN. 47Ca production for 47Ca/47Sc generator system using electron linacs. Appl Radiat Isot 2015; 97:188-92.
  • 50. Kerdjoudj R, Pniok M, Alliot C, Kubíček V, Havlíčková J, Rösch F, et al. Scandium(III) complexes of monophosphorus acid DOTA analogues: a thermodynamic and radiolabelling study with 44Sc from cyclotron and from a 44Ti/44Sc generator. Dalton Trans 2016;45:1398-409.
  • 51. Singh A, van der Meulen NP, Müller C, Klette I, Kulkarni HR, Türler A, et al. First-in-human PET/CT imaging of metastatic neuroendocrine neoplasms with cyclotron-produced 44ScDOTATOC: a proof-of-concept study. Cancer Biother Radiopharm 2017;32:124-32.
  • 52. Van der Meulen NP, Hasler R, Talip Z, Grundler PV, Favaretto C, Umbricht CA, et al. Developments toward the implementation of 44Sc production at a medical cyclotron. Molecules 2020;25: 4706.
  • 53. Filosofov DV, Loktionova NS, Rösch F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim Acta 2010;98:149-56.
  • 54. Pruszyński M, Loktionova NS, Filosofov DV, Rösch F. Post-elution processing of 44Ti/44Sc generator-derived 44Sc for medical application. Appl Radiat Isot 2010;68:1630-41.
  • 55. Mazza M, Alliot C, Sinquin C, Colliec-Jouault S, Reiller PE, Huclier-Markai S. Marine exopolysaccharide complexed with scandium aimed as theranostic agents. Molecules 2021;26: 1143.
  • 56. McCarthy DW, Bass LA, Cutler PD, Shefer RE, Klinkowstein RE, Herrero P, et al. High purity production and potential applications of copper-60 and copper-61. Nucl Med Biol 1999; 26:351-8.
  • 57. Obata A, Kasamatsu S, Mc Carthy DW. Production of therapeutic quantities of 64Cu using a 12 MeV cyclotron. Nucl Med Biol 2003; 30:535-9.
  • 58. Kozempel J, Abbas K, Simonelli F, Zampese M, Holzwarth U, Gibson N, et al. A novel method for n.c.a. 64Cu production by the 64Zn(d,2p)64Cu reaction and dual ion-exchange column chromatography. Radiochim Acta 2007;95:75-80.
  • 59. Nickles RJ. Production of a broad range of radionuclides with an 11 MeV proton cyclotron. J Label Compd Radiopharm 1991;30: 120.
  • 60. Nickles J, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N. Preparation of 67Cu via deuteron irradiation of 70Zn. Radiochim Acta 2012;100:419-23.
  • 61. Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, et al. Small-scale production of 67Cu for a preclinical study via the 64Ni(α,p)67Cu channel. Nucl Med Biol 2018;59:56-60.
  • 62. Denoyer D, Masaldan S, La Fontaine S, Cater M. Targeting copper in cancer therapy: ‘Copper that Cancer’. Metallomics 2015;7: 1459-76.
  • 63. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in cancer. Biochim Biophys Acta Mol Cell Res 2021;1868: 118893.
  • 64. Boschi A, Martini P, Janevik-Ivanovska E, Duatti A. The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018;23:1489-501.
  • 65. Jørgensen JT, Persson M, Madsen J, Kjær A. High tumor uptake of 64Cu: implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl Med Biol 2013;40:345-50.
  • 66. Cutler CS, Hennkens HM, Sisay N, Huclier-Markai S, Jurisson SS. Radiometals for combined imaging and therapy. Chem Rev 2013; 13:858-83.
  • 67. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm 2009;24:379-93.
  • 68. Liu T, Karlsen M, Karlberg AM, Redalen KR. Hypoxia imaging and theranostic potential of [64Cu][Cu(ATSM)] and ionic Cu(II) salts: a review of current evidence and discussion of the retention mechanisms. EJNMMI Res 2020;9:33.
  • 69. Ponnala S, Amor-Coarasa A, Kelly J, Zia N, Clarence W, Nikolopoulou A, et al. A next generation theranostic PSMA ligand for 64Cu and67Cu-based prostate cancer imaging and therapy. J Nucl Med 2019;60(1 Suppl):1005.
  • 70. Gourni E, Del Pozzo L, Kheirallah E, Smerling C, Waser B. Copper- 64 labeled macrobicyclic sarcophagine coupled to a GRP receptor antagonist shows great promise for PET imaging of prostate cancer. Mol Pharm 2015;12:2781-90.
  • 71. Paterson BM, Roselt P, Denoyer D, Cullinane C, Binns D, Noonan W, et al. PET imaging of tumours with a 64Cu labeled macrobicyclic cage amine ligand tethered to Tyr3 -octreotate. Dalton Trans 2014;43:1386-96.
  • 72. McInnes L, Zia N, Cullinane C, Van Zuylekom J, Jackson S, Stoner J, et al. A Cu-64/Cu-67 bifunctional PSMA ligand as a theranostic for prostate cancer. J Nucl Med 2020;61(1 Suppl): 1215.
  • 73. Available from: https://clinicaltrials.gov/ct2/show/NCT04023331.
  • 74. Hao G, Mastren T, Silvers W, Hassan G, Öz OK, Sun X. Copper-67 radioimmunotheranostics for simultaneous immunotherapy and immuno-SPECT. Sci Rep 2021;11:3622.
  • 75. Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJ, Visser GW, Zijlstra JM, et al. Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imag 2006;33: 1337-45.
  • 76. Wiseman GA, Witzig TE. Yttrium-90 (90Y) ibritumomab tiuxetan (Zevalin) induces long-term durable responses in patients with relapsed or refractory B-Cell non-Hodgkin’s lymphoma. Cancer Biother Radiopharm 2005;20:185-8.
  • 77. Selwyn RG, Nickles RJ, Thomadsen BR, DeWerd LA, Micka JA. A new internal pair production branching ratio of 90Y: the development of a non-destructive assay for 90Y and 90Sr. Appl Radiat Isot 2007;65:318-27.
  • 78. Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. BioMed Res Int 2015;2015:481279.
  • 79. Rösch F, Qaim SM, Stöcklin G. Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr (p,n)- and natRb (3He, xn)- processes. Radiochim Acta 1993;61:1.
  • 80. Uddin MS, Khandaker MU, Kim KS, Lee YS, Lee MW, Kim GN. Excitation functions of the proton induced nuclear reactions on natural zirconium. Nucl Instrum Methods Phys Res B 2008; 266:13.
  • 81. Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Cho YS, et al. Experimental determination of proton-induced cross-sections on natural zirconium. Appl Radiat Isot 2009;67:1341.
  • 82. Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, Nagatsu K, Zhang M-R, et al. Excitation functions of natZr + p nuclear processes up to 70 MeV: new measurements and compilation. Nucl Instrum Methods Phys Res B 2015;343:173.
  • 83. Tárkányi F, Ditrói F, Takács S, Hermanne A, Al-Abyad M, Yamazaki H, et al. New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium. Appl Radiat Isot 2015;97:149.
  • 84. Rösch F, Qaim SM, Stöcklin G. Production of the positron emitting radioisotope 86Y for nuclear medical application. Appl Radiat Isot 1993;44:677.
  • 85. Kandil S, Scholten B, Hassan K, Hanafi H, Qaim S. A comparative study on the separation of radioyttrium from Sr-and Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added 86Y, 87Y and 88Y using a cyclotron. J Radioanal Nucl Chem 2009;279:823.
  • 86. Aluicio-Sarduy E, Hernandez R, Valdovinos HF, Kutyreff CJ, Ellison PA, Barnhart TE, et al. Simplified and automatable radiochemical separation strategy for the production of radiopharmaceutical quality 86Y using single column extraction chromatography. Appl Radiat Isot 2018;142:28.
  • 87. Nayak TK, Brechbiel MW. 86Y based PET radiopharmaceuticals: radiochemistry and biological applications. Med Chem 2011;7: 380-8.
  • 88. Kunikowska J, Pawlak D, Bąk MI, Kos-Kudła B, Mikołajczak R, Królicki L. Long-term results and tolerability of tandem peptide receptor radionuclide therapy with 90Y/177Lu-DOTATATE in neuroendocrine tumors with respect to the primary location: a 10-year study. Ann Nucl Med 2017;31:347-56.
  • 89. Li M, Sagastume EA, Lee D, McAlister D, DeGraffenreid AJ, Olewine KR, et al. 203/212Pb theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. Curr Med Chem 2020;27:7003-31.
  • 90. Horlock P, Thakur M, Watson I. Cyclotron produced lead-203. Postgrad Med 1975;51:751-4.
  • 91. Laxdal RE, Altman A, Kuo T. Beam measurements on a small commercial cyclotron. In: 4th European particle accelerator conference. London, UK: World Scientific; 1994:545 p.
  • 92. Azzam A, Said SA, Al-abyad M. Evaluation of different production routes for the radio medical isotope 203Pb using TALYS 1.4 and EMPIRE 3.1 code calculations. Appl Radiat Isot 2014;91:109-13.
  • 93. McNeil BL, Robertson AKH, Fu W, Yang H, Hoehr C, Ramogida CF, et al. Production, purification, and radiolabeling of the 203Pb/212Pb theranostic pair. EJNMMI Radiopharm Chem 2021; 6:6.
  • 94. Sgouros G, Hobbs RF. Dosimetry for radiopharmaceutical therapy. Semin Nucl Med 2014;44:172-8.
  • 95. Mirzadeh S, Kumar K, Gansow OA. The chemical fate of 212BiDOTA formed by β- decay of 212Pb(DOTA)2-. Radiochim Acta 1993; 60:1-10.
  • 96. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. Nucl Med Biol 2000;27:93-100.
  • 97. Chang SS. Overview of prostate-specific membrane antigen. Rev Urol 2004;6(10 Suppl):S13-8.
  • 98. Banerjee SR, Minn I, Kumar V, Josefsson A, Lisok A, Brummet M, et al. Preclinical evaluation of 203/212Pb-labeled low-molecularweight compounds for targeted radiopharmaceutical therapy of prostate cancer. J Nucl Med 2020;61:80-8.
  • 99. Miao Y, Hylarides M, Fisher DR, Shelton T, Moore H, Wester DW, et al. Melanoma therapy via peptide-targeted α-radiation. Clin Cancer Res 2005;11:5616-21.
  • 100. Miao Y, Figueroa SD, Fisher DR, Moore HA, Testa RF, Hoffman TJ, et al. 203Pb-labeled alpha-melanocyte-stimulating hormone peptide as an imaging probe for melanoma detection. J Nucl Med 2008;49:823-9.
  • 101. Guo H, Yang J, Gallazzi F, Miao Y. Reduction of the ring size of radiolabeled lactam bridge-cyclized alpha-MSH peptide, resulting in enhanced melanoma uptake. J Nucl Med 2010;51: 418-26.
  • 102. Tárkányi F, Hermanne A, Takács S, Shubin YN, Dityuk AI. Cross sections for production of the therapeutic radioisotopes 198Au and 199Au in proton and deuteron induced reactions on 198Pt. Radiochim Acta 2004;92:223-8.
  • 103. Anderson P, Vaughan ATM, Varley NR. Antibodies labeled with 199Au: potential of 199Au for radioimmunotherapy. Nucl Med Biol 1988;15:293-7.
  • 104. Das NR, Banerjee K, Chatterjee K, Lahiri S. Separation of carrierfree 199Au as a β-decay product of 199Pt. Appl Radiat Isot 1999;50: 643-7.
  • 105. Fazaeli Y, Akhavan O, Rahighi R, Aboudzadeh MR, Karimi E, Afarideh H. In vivo SPECT imaging of tumors by 198,199Au-labeled graphene oxide nanostructures. Mater Sci Eng C Mater Biol Appl 2014;45:196-204.
  • 106. Vimalnath KV, Chakraborty S, Dash A. Reactor production of nocarrier-added 199Au for biomedical applications. RSC Adv 2016; 6:82832-41.
  • 107. Khandaker MU, Haba H, Abu Kassim H. Production of radio-gold 199Au for diagnostic and therapeutic applications. AIP Conf Proc 2016;1704:030008.
  • 108. Panchapakesan B, Book-Newell B, Sethu P, Rao M, Irudayaraj J. Gold nanoprobes for theranostics. Nanomedicine 2011;6: 1787-811.
  • 109. Aryal S, Grailer JJ, Pilla S, Steeberb DA, Gong S. Doxorubicin conjugated gold nanoparticles as water-soluble and pH-responsive anticancer drug nanocarriers. J Mater Chem 2009;19:7879.
  • 110. Żelechowska-Matysiak K, Łyczko M, Bilewicz A, Majkowska-Pilip A. Multimodal radiobioconjugate - trastuzumab-PEG-[Au-198]AuNPs-PEG-DOX for targeted radionuclide therapy of HER2-positive cancers. Nucl Med Biol 2021;96–97(S Suppl):S86.
  • 111. Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM, Qiu QY, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 1997;89:3354-60.
  • 112. Kinjo K, Kizaki M, Muto A, Fukuchi Y, Umezawa A, Yamato K, et al. Arsenic trioxide (As2O3)-induced apoptosis and differentiation in retinoic acid resistant acute promyelocytic leukemia model in hGM-CSF-producing transgenic SCID mice. Leukemia 2000;14: 431-8.
  • 113. Dilda PJ, Hogg PJ. Arsenical-based cancer drugs. Cancer Treat Rev 2007;33:542-64.
  • 114. Jutoorua I, Chadalapakaa G, Sreevalsana S, Leib P, Barhoumic R, Burghardtc R, et al. Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Exp Cell Res 2010;316:2174-88.
  • 115. (NNDC). National Nuclear Data Center; 2021. https://www.nndc.bnl.gov/nudat3/.
  • 116. Beard HC. The radiochemistry of arsenic. Nuclear Science Series. Washington: National Academy of Sciences; 1960.
  • 117. Basile D, Birattari C, Bonardi M, Goetz L, Sabbioni E, Salomone A. Excitation functions and production of arsenic radioisotopes for environmental toxicology and biomedical purposes. Int J Appl Radiat Isot 1984;32:403-10.
  • 118. Phillips DR. Chemistry and concept for an automated 72Se/72As generator. Patent No. 5,371,372, United States, 1994.
  • 119. DeGraffenreid AJ, Medvedev DG, Phelps TE, Gott MD, Smith SV, Jurisson SS, et al. Cross-section measurements and production of 72Se with medium to high energy protons using arsenic containing targets. Radiochim Acta 2019;107:279-87.
  • 120. Ellison PA, Barnhart TE, Chen F, Hong H, Zhang Y, Theuer CP, et al. High yield production and radiochemical isolation of isotopically pure arsenic-72 and novel radioarsenic labeling strategies for the development of theranostic radiopharmaceuticals. Bioconjugate Chem 2016;27:179-88.
  • 121. Mausner LF, Kurczak SO, Jamriska DJ. Production of 73As by irradiation of Ge target. J Nucl Med 2004;45:471.
  • 122. Ellison PA, Barnhart TE, Engle JW, Nickles RJ, DeJesus OT. Production and chemical isolation procedure of positronemitting isotopes of arsenic for environmental and medical applications. AIP Conf Proc 2012;1509:135.
  • 123. Jennewein M, Qaim SM, Hermanne A, Jahn M, Tsyganov E, Slavine N, et al. A new method for radiochemical separation of arsenic from irradiated germanium oxide. Appl Radiat Isot 2005; 63:343-51.
  • 124. Feng Y, DeGraffenreid AJ, Phipps MD, Rold TL, Okoye NC, Gallazzi FA, et al. A trithiol bifunctional chelate for 72,77As: a matched pair theranostic complex with high in vivo stability. Nucl Med Biol 2018;61:1-10.
  • 125. Sitarz M, Cussonneau JP, Matulewicz T, Haddad F. Radionuclide candidates for β+γ coincidence PET: an overview. Appl Radiat Isot 2020;155:108898.
  • 126. Jennewein M, Qaim SM, Kulkarni PV, Mason RP, Hermanne A, Rösch F. A no-carrier-added 72Se/72As radionuclide generator based on solid phase extraction. Radiochim Acta 2005;93:579-83.
  • 127. Chajduk E, Doner K, Polkowska-Motrenko H, Bilewicz A. Novel radiochemical separation of arsenic from selenium for 72Se/72As generator. Appl Radiat Isot 2012;70:819-22.
  • 128. Jennewein M, Schmidt A, Novgorodov AF, Qaim SM, Rösch F. A no-carrier-added 72Se/72As radionuclide generator based on distillation. Radiochim Acta 2004;92:245-9.
  • 129. Cea-Olivares R, Toscano RA, Lopez M, Garcia P. Coordination ability of the heterocycles 1,3-dithia-2-arsa- and -stibacyclopentanes towards sulfur containing ligands, Part II. Diheterocyclic dithiocarbamate complexes. X-ray structure of the 4-morpholinecarbodithioate of 1,3-dithia-2-arsacyclopentane. Monatsh Chem 1993;124:177-83.
  • 130. Garje SS, Jain VK, Tiekink ERT. Synthesis and characterisation of organoarsenic(III) xanthates and dithiocarbamates. X-ray crystal structures of RAs(S2CNEt2)2, R = Me and Ph. J Organomet Chem 1997;538:129-34.
  • 131. Wenclawiak BW, Uttich S, Deiseroth HJ, Schmitz D. Studies on bulky residual group substituted arsenic(III) dithiocarbamate structures. Inorg Chim Acta 2003;348:1-7.
  • 132. Chen D, Lai CS, Tiekink ERT. Tris(N,N-dimethyldithiocarbamato) arsenic(III) dichloromethane solvate. Appl Organomet Chem 2003;17:813-4.
  • 133. Chauhan HPS, Kori K, Shaik NM, Mathur S, Huch V. Dialkyldithiocarbamate derivatives of toluene-3,4-dithiolato arsenic(III) and -bismuth(III): synthetic, spectral and single crystal X-ray structural studies. Polyhedron 2005;24:89-95.
  • 134. Tran TTP, Ould DMC, Wilkins LC, Wright DS, Melen RL, Rawson JM. Supramolecular aggregation in dithia-arsoles: chlorides, cations and N-centred paddlewheels. CrystEngComm 2017;19: 4696-9.
  • 135. Kisenyi JM, Willey GR, Drew MGB, Wandiga SO. Toluene-3,4-dithiol (H2tdt) complexes of group 5B halides. Observations of lone-pair stereochemical activity and redox behaviour. Crystal and molecular structures of [AsCl(tdt)] and [PPh4][Sb(tdt) 3]. J Chem Soc Dalton Trans 1985:69-74. https://doi.org/10.1039/dt9850000069.
  • 136. DeGraffenreid AJ, Feng Y, Barnes CL, Ketring AR, Cutler CS, Jurisson SS. Trithiols and their arsenic compounds for potential use in diagnostic and therapeutic radiopharmaceuticals. Nucl Med Biol 2016;43:288-95.
  • 137. Lyczko M, Lyczko K, Majkowska-Pilip A, Bilewicz A. 1,2-benzenedithiol and toluene-3,4-dithiol arsenic(iii) complexes-synthesis, structure, spectroscopic characterization and toxicological studies. Molecules 2019;24:3865.
  • 138. Jennewein M, Lewis MA, Zhao D, Tsyganov E, Slavine N, He J, et al. Vascular imaging of solid tumors in rats with a radioactive arsenic-labeled antibody that binds exposed phosphatidylserine. Clin Cancer Res 2008;14:1377-85.
  • 139. Krajewski S, Cydzik I, Abbas K, Bulgheroni A, Simonell F, Holzwarth U, et al. Simple and fast procedure of labelling DOTATATE with 86Y and 44Sc. Eur J Nucl Med Mol Imag 2012;39(2 Suppl):S525.
  • 140. Kunikowska J, Kuliński R, Muylle K, Koziara H, Królicki L. 68GaProstate-Specific membrane antigen-11 PET/CT: a new imaging option for recurrent glioblastoma multiforme? Clin Nucl Med 2020;45:11-8.
  • 141. Hennrich U, Eder M. [68Ga]Ga-PSMA-11: The First FDA-Approved 68Ga-Radiopharmaceutical for PET Imaging of Prostate Cancer. Pharmaceuticals 2021;14:713.
  • 142. Guo J, Rahme K, He Y, Li LL, Holmes JD, O’Driscoll CM. Gold nanoparticles enlighten the future of cancer theranostics. Int J Nanomed 2017;12:6131-52.
  • 143. Dziawer L, Kozminski P, Meczynska-Wielgosz S, Pruszynski M, Lyczko M, Was B, et al. Gold nanoparticle bioconjugates labelled with 211At for targeted alpha therapy. RSC Adv 2017;7:41024-32.
  • 144. Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, ŻelechowskaMatysiak K, Walczak R, et al. A lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials 2020;10:2272.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7aa7684-5ed0-4b6a-82fc-b40adf8406d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.