PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydro-cracked light gas oil biodesulphurisation by immobilised Pseudomonas aeruginosa cells on polyvinyl alcohol

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Refining petroleum fractions containing heterocyclic sulphur compounds to produce sulphur-free fuels, requires efficient desulphurisation methods. A new biocatalyst has been synthesised by immobilising Pseudomonas aeruginosa cells on polyvinyl alcohol by adsorption for hydro-cracked light gas oil bio-desulphurisation. The surface functional groups and biocatalyst morphology have been investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The bio-desulphurisation of dibenzothiophene as a heterocyclic sulphur model compound of gas oil was achieved with an aqueous-oil ratio (v/v) of 50 %, where the removed mass was 0.3826 mg per gram of biocatalyst at equilibrium condition, bio-desulphurisation rate of 0.375 h–1 and removal percentage was 95.65 %. The biodegradation of dibenzothiophene and its derivatives in hydro-cracked light gas oil has been determined after a batch process using 0.5 g of the biocatalyst after 5 h of contact time at 37 °C. According to gas chromatography - mass spectrometry, ethyl and trimethyl derivatives of dibenzothiophene have been degraded by higher efficiencies in comparison with other derivatives. Also, thiophenes and mercaptans of the gasoil sample have been degraded simultaneously to some extent. Equilibrium data have been observed to obey the pseudo-first-order kinetic model. The cell immobilisation facilitates the interaction of surface functional groups with sulphur compounds. The synergistic effect of cell immobilisation on the bio-activity of bacterial cells was due to the maintenance of the heterotrophic, bacillus morphology of the cells after immobilisation. This approach provides a simple, economical method with mild operating conditions to produce low-sulphur light gas oil through the biodegradation of heterocyclic sulphur compounds.
Rocznik
Strony
567--580
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Department of Chemical Engineering, College of Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran, phone +98 9188316765, fax +98 8337243196
  • Department of Chemistry, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, Kermanshah, 6718997551, Iran, phone +98 8337243181, fax +98 8337243196
autor
  • Department of Biology, College of Basic Sciences, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran, phone +98 9188361830, fax +98 8337243196
Bibliografia
  • [1] Mohebali G, Ball AS. Biodesulphurisation of diesel fuels - past, present and future perspectives. Int Biodeterior Biodegradation. 2016;110:163-80. DOI: 10.1016/j.ibiod.2016.03.011.
  • [2] Fujikawa T, Kimura H, Kiriyama K, Hagiwara K. Development of ultra-deep HDS catalyst for production of clean diesel fuels. Catal Today. 2006;111:188-93. DOI: 10.1016/j.cattod.2005.10.024.
  • [3] Speight JG, El-Gendy NS. Introduction to Petroleum Biotechnology. Houston: Elsevier; 2017. ISBN: 9780128051511.
  • [4] Hossain MN, Park HC, Choi HS. A comprehensive review on catalytic oxidative desulphurisation of liquid fuel oil. Catalysts. 2019;9:229-40. DOI: 10.3390/catal9030229.
  • [5] Kang L, Liu H, He H, Yang C. Oxidative desulphurisation of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration. Fuel. 2018;234:1229-37. DOI: 10.1016/j.fuel.2018.07.148.
  • [6] Zou J, Lin Y, Wu S, Wu M, Yang C. Construction of bifunctional 3-D ordered mesoporous catalyst for oxidative desulphurisation. Sep Purif Technol. 2021;264:118434. DOI: 10.1016/j.seppur.2021.118434.
  • [7] Alves L, Paixão SM, Pacheco R, Ferreira AF, Silva CM. Biodesulphurisation of fossil fuels: energy, emissions and cost analysis. RSC Adv. 2015;5:34047-57. DOI: 10.1039/c4ra14216k.
  • [8] Li YG, Gao HS, Li WL, Xing JM, Liu HZ. In situ magnetic separation and immobilisation of dibenzothiophene-desulphurising bacteria. Bioresour Technol. 2009;100:5092-6. DOI: 10.1016/j.biortech.2009.05.064.
  • [9] Nuhu AA. Bio-catalytic desulphurisation of fossil fuels: a mini-review. Rev Environ Sci Biotechnol. 2013;12:9-23. DOI: 10.1007/s11157-012-9267-x.
  • [10] Mamuad RY, Choi AES. Biodesulfurisation processes for the removal of sulfur from diesel oil: A perspective report. Energies. 2023;16(6):2738. DOI: 10.3390/en16062738.
  • [11] Akhtar N, Ghauri MA, Akhtar K. Dibenzothiophene desulphurisation capability and evolutionary divergence of newly isolated bacteria. Arch Microbiol. 2016;198:509-19. DOI: 10.1007/s00203-016-1209-5.
  • [12] Derikvand P, Etemadifar Z, Biria D. RSM optimisation of dibenzothiophene biodesulphurisation by newly isolated strain of Rhodococcus erythropolis PD1 in aqueous and biphasic systems. Microbiology. 2015;84:65-72. DOI: 10.1134/S002626171501004X.
  • [13] Feng S, Yang H, Zhan X, Wang W. Enhancement of dibenzothiophene biodesulphurisation by weakening the feedback inhibition effects based on a systematic understanding of the biodesulphurisation mechanism by Gordonia sp. through the potential “4S” pathway. RSC Adv. 2016;6:82872-81. DOI: 10.1039/C6RA14459D.
  • [14] Martín‐Cabello G, Terrón‐González L, Ferrer M, Santero E. Identification of a complete dibenzothiophene biodesulphurisation operon and its regulator by functional metagenomics. Environ Microbiol. 2020;22:91-106. DOI: 10.1111/1462-2920.14823.
  • [15] Aggarwal S, Karimi IA, Kilbane J, Lee DY. Roles of sulfite oxidoreductase and sulfite reductase in improving desulphurisation by Rhodococcus erythropolis. Mol Bio Syst. 2012;8:2724-32. DOI: 10.1039/c2mb25127b.
  • [16] Dinamarca MA, Ibacache-Quiroga C, Baeza P, Galvez S, Villarroel M, Olivero P, et al. Biodesulphurisation of gas oil using inorganic supports biomodified with metabolically active cells immobilised by adsorption. Bioresour Technol. 2010;101:2375-8. DOI: 10.1016/j.biortech.2009.11.086.
  • [17] Sadare OO, Daramola MO. Bio-catalytic degradation of dibenzothiophene (DBT) in petroleum distillate (diesel) by Pseudomonas spp. Sci Rep. 2023;13:6020. DOI: 10.1038/s41598-023-31951-8.
  • [18] Al-Khazaali WMK, Ataei SA. Optimisation of biodesulphurisation of sour heavy crude oil. PLoS ONE. 2023;18(4):e0283285. DOI: 10.1371/journal.pone.0283285.
  • [19] Martzoukou O, Amillis S, Glekas PD, Breyanni D, Avgeris M, Scorilas A, et al. Advancing desulphurisation in the model biocatalyst Rhodococcus qingshengii IGTS8 via an in locus combinatorial approach. Appl Environ Microbiol. 2023;89(2):e0197022. DOI: 10.1128/aem.01970-22.
  • [20] Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, et al. Mechanistic insights into sulphur source-driven physiological responses and metabolic reorganisation in the fuel - biodesulphurising Rhodococcus qingshengii IGTS8. Appl Environ Microbiol. 2023;89(9):e0082623. DOI: 10.1128/aem.00826-23.
  • [21] Akhtar N, Akhtar K, Ghauri MA. Biodesulphurisation of thiophenic compounds by a 2-hydroxybiphenyl-resistant Gordonia sp. HS126-4N carrying dszABC genes. Curr Microbiol. 2018;75:597-603. DOI: 10.1007/s00284-017-1422-8.
  • [22] Alves L, Paixão SM. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation. Bioresour Technol. 2011;102:9162-6. DOI: 10.1016/j.biortech.2011.06.070.
  • [23] Malani RS, Batghare AH, Bhasarkar JB, Moholkar VS. Kinetic modelling and process engineering aspects of biodesulphurisation of liquid fuels: Review and analysis. Bioresour Technol Rep. 2021;14:100668. DOI: 10.1016/j.biteb.2021.100668.
  • [24] El-Gendy NS, Nassar HMN. Biodesulphurisation in Petroleum Refining. Beverly MA: John Wiley Sons; 2018. ISBN: 9781119224105.
  • [25] Hokmabadi M, Khosravinia S, Mahdavi MA, Gheshlaghi R. Enhancing the biodesulphurisation capacity of Rhodococcus sp. FUM94 in a biphasic system through optimisation of operational factors. J Appl Microbiol. 2022;132:3461-75. DOI: 10.1111/jam.15442.
  • [26] Fatahi A, Sadeghi S. Biodesulphurisation of gasoline by Rhodococcus erythropolis supported on polyvinyl alcohol. Lett Appl Microbiol. 2017;64:370-8. DOI: 10.1111/lam.12729.
  • [27] Karimi AM, Sadeghi S, Salimi F. Biodesulphurisation of thiophene as a sulphur model compound in crude oils by Pseudomonas aeruginosa supported on polyethylene. Ecol Chem Eng S. 2017;24:371-9. DOI: 10.1515/eces-2017-0024.
  • [28] Rychlewska K, Konieczny K, Bodzek M. Pervaporative desulphurisation of gasoline - separation of thiophene/n-heptane mixture. Arch Environ Prot. 2015;41:3-11. DOI: 10.1515/aep-2015-0013.
  • [29] Chakraborty S, Shet SM, Periea MM, Nataraj SK, Mondal D. Designing biopolymer-based artificial peroxidase for oxidative removal of dibenzothiophene from a model diesel fuel. Int J Biol Macromol. 2021;183:1784-93. DOI: 10.1016/j.ijbiomac.2021.05.141.
  • [30] Ho YS, McKay G. Sorption of dye from aqueous solution by peat. Chem Eng J. 1998;70:115-24. DOI: 10.1016/S0923-0467(98)00076-1.
  • [31] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451-65. DOI: 10.1016/S0032-9592(98)00112-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7a95b16-44b9-4282-8fdf-4e9036350a7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.