PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

FGM based on copper–alumina composites for brake disc applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Copper–alumina composites of the interpenetrating networks type are interesting materials for many applications because of their properties. On the base of preliminary investigations and practical works, in order to obtain a material with high resistance to friction wear as well as good dissipation of heat generated during work, it was decided that a developed material would be prepared on the base of the Cu–Al2O3 composite, with a graded composition. In this paper, we present the developed method of manufacturing dense copper–alumina FGMs, using ceramic preform with a graded porosity infiltrated with molten copper. The article also presents the full characterization of the obtained materials and mainly the impact of microstructure on the useful properties. The produced gradient material of a Cu–Al2O3 brake disk underwent tribological tests under conditions resembling real conditions. These disks also went through a series of abrasive wear trials at different operation stages. In comparison with the reference material (i.e., grey cast iron), the obtained gradient materials are characterized by a lower degree of wear when retaining a similar coefficient of friction value due to the ceramic phase addition. Additionally, it was found that using the copper-based gradient material guarantees faster heat dissipation from the contact area.
Rocznik
Strony
279--291
Opis fizyczny
Bibliogr. 24 poz., fot., rys., wykr.
Twórcy
  • Research Network ŁUKASIEWICZ, Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01‑919 Warsaw, Poland
  • Research Network ŁUKASIEWICZ, Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01‑919 Warsaw, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5A Pawinskiego Str., 02‑106 Warsaw, Poland
autor
  • CRF, Centro Ricerche Fiat, Strada Torino 50, Orbassano, Italy
  • Research Network ŁUKASIEWICZ, Institute of Electronic Materials Technology, 133 Wólczyńska Str., 01‑919 Warsaw, Poland
Bibliografia
  • [1] Miracle DB. Metal matrix composites-From science to technological significance. Compos Sci Technol. 2005;65:2526–40.
  • [2] Nicholls CJ, Boswell B, Davies IJ, Islam MN. Review of machining metal matrix composites. Int J Adv Manuf Technol. 2017;90:2429–41.
  • [3] Scherm F, Völkl R, Neubrand A, Bosbach F, Glatzel U. Mechanical characterization of interpenetrating network metal–ceramic composites. Mat Sci Eng A. 2010;527:1260–5.
  • [4] Wannasin J, Flemings MC. Metal matrix composites: infiltration. Wiley Encycl Compos. 2012;3:1747–9.
  • [5] Jhaver R, Tippur H. Processing, compression response and finite element modeling of syntactic foam based interpenetrating phase composite (IPC). Mat Sci Eng A. 2009;499:507–17.
  • [6] Panda S, Dash K, Ray BC. Processing and properties of Cu based micro- and nano–composites. B Mater Sci. 2014;37:227–38.
  • [7] Fathy A, El-Kady O. Thermal expansion and thermal conductivity characteristics of Cu–Al2O3 nanocomposites. Mater Des. 2013;46:355–9.
  • [8] Sobczak J, Drenchev L. Metallic functionally graded materials: a specific class of advanced composites. J Mater Sci Technol. 2013;29:297–316.
  • [9] Maj J, Basista M, Węglewski W, Bochenek K, Strojny-Nędza A, Naplocha K, Panzner T, Tatarková M, Fiori F. Effect of microstructure on mechanical properties and residual stresses in interpenetrating aluminum-alumina composites fabricated by squeeze. Mater Sci Eng A. 2018;715:154–62.
  • [10] Gasik MM. Functionally graded materials: bulk processing techniques. Inter J Mater Prod Tec. 2010;39:20–9.
  • [11] Winzer J, Weiler L, Pouquet J, Roder J. Wear behavior of interpenetration alumina-copper composites. Wear. 2011;271:2845–51.
  • [12] R. Mahamood, E. Akinlabi, Functionally Graded Materials: An Overview, Proceeding of the World Congress on Engineering 4–6 (2012) London, 3.
  • [13] Muller E, Drasar C, Schilz J, Kaysser WA. Functional graded materials for sensor and energy applications. Mater Sci Eng A. 2003;362:17–39.
  • [14] Konopka K, Oziȩbło A. Microstructure and the fracture toughness of the Al2O3–Fe composites. Mater Charact. 2001;46:125–9.
  • [15] Moon RJ, Hoffman M, Rӧdel J, Tochino S, Pezzotti G. Evaluation of crack-tip stress field on microstructural-scale fracture in Al–Al2O3 interpenetrating network composites. Acta Mater. 2009;57:570–81.
  • [16] Chmielewski T, Golański D, Włosiński W. Metallization of ceramic materials based on the kinetic energy of detonation waves. Bull Pol Acad Sci-Tech Sci. 2015;63:449–56.
  • [17] Hsu HP, Huang MC. Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals. Phys Rev E. 1999;60:6361–70.
  • [18] Herega A. Some applications of the percolation theory: brief review of the century beginning. J Mat Sci Eng A. 2015;5:409–14.
  • [19] Tu JP, Yang YZ, Wang LY, Ma XC, Zhang XB. Tribological properties of carbon-nanotube-reinforced copper composites. Tribol Lett. 2001;10:225–8.
  • [20] Xiao Y, Zhang Z, Yao P, Fan K, Zhou H, Gong T, Zhao L, Deng M. Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol Inter. 2019;119:585–92.
  • [21] Sadoun AM, Fathy A. Experimental study on tribological properties of Cu–Al2O3 nanocomposite hybridized by graphene nanoplatelets. Ceram Int. 2019;45:24784–92.
  • [22] Zhang P, Zhang L, Wei D, Wu P, Cao J, Shijia C, Qu X. A highperformance copper-based brake pad for high-speed railway trains and its surface substance evolution and wear mechanism at high temperature. Wear. 2020;444–445:203182.
  • [23] Su L, Ga F, Han X, Chen J. Effect of copper powder third body on tribological property of copper-based friction materials. Tribol Inter. 2015;90:420–5.
  • [24] Purohit R, Kumar Solanki N, Bajpayee G, Rana RS, Hemath Kumar G, Nateria R. Development of Cu–Al2O3–CBN hybrid composite through powder process and analysis of mechanical properties. Mater Today Proc. 2017;4:3270–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7a707c7-df4d-4ae9-92bc-4635d3af88a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.