PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High Temperature Random Stack Creep Property of Ni-Cr-Al based Powder Porous Metal Manufactured with Powder Sintering Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, attempts have been made to use porous metal as catalysts in a reactor for the hydrogen manufacturing process using steam methane reforming (SMR). This study manufactured Ni-Cr-Al based powder porous metal, stacked cubic form porous blocks, and investigated high temperature random stack creep property. To establish an environment similar to the actual situation, a random stack jig with a 1-inch diameter and height of 75 mm was used. The porous metal used for this study had an average pore size of ~1161 μm by rolling direction. The relative density of the powder porous metal was measured as 6.72%. A compression test performed at 1073K identified that the powder porous metal had high temperature (800°C) compressive strength of 0.76 MPa. A 800°C random stack creep test at 0.38 MPa measured a steady-state creep rate of 8.58×10-10 s-1, confirming outstanding high temperature creep properties. Compared to a single cubic powder porous metal with an identical stress ratio, this is a 1,000-times lower (better) steady-state creep rate. Based on the findings above, the reason of difference in creep properties between a single creep test and random stack creep test was discussed.
Twórcy
  • Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
autor
  • Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
autor
  • Asflow Co. Ltd., Hwaseong 18522, Republic of Korea
autor
  • Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
Bibliografia
  • [1] L. J. Gibson and M. F. Ashby, Cellular solids: Structure and Properties, 2nd Ed. Cambridge University Press, 1997.
  • [2] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson and H.N.G. Wadley, Metal Foams: A design Guide, Oxford, 2000.
  • [3] Wadley HNG, Cellular metals and metal foaming technology, Verlag MIT, 2001.
  • [4] G. J. Davies, Shu Zhen, Jour. Mater. Sci. 18, 1899 (1983).
  • [5] A. M. Hodge, D. C. Dunand, Intermetallics 9, 581 (2001).
  • [6] D. T. Queheillalt, Y. Katsumura, H.N.G. Wadley, J. Mater. Res. 16, 1028 (2001).
  • [7] Y. Boonyongmaneeratand, D. C. Dunand, Adv. Eng. Mater. 10 (4), 379 (2008).
  • [8] L. Murr, S. Li, Y. Tian, K. Amato, E. Martinez, F. Medina, Materials 4 (4), 782 (2011).
  • [9] G. Walther, B. Kloden, T. Buttner, T. Weissgarber, B. Kieback, A. Bohm, D. Naumann, S. Saberi, L. Timberg, Adv. Eng. Mater. 10, 803 (2008).
  • [10] B. H. Kang, M. H. Park, K. A. Lee, Arch. Metall. Mater. 62, 2(B), 1329 (2017).
  • [11] K. S. Kim, J. Y. Yun, B. G. Choi, K. A. Lee, Met. Mater. Int. 20, 507 (2014).
  • [12] L. Giani, G. Groppi, E. Tronconi, Ind. Eng. Chem. Res. 44, 4993 (2005).
  • [13] K. E. Amin, A. K. Mukherjee, J. E. Dorn, J. Mech. Phys. Solids 18, 413 (1970).
  • [14] G. A. Webster, A.P.D. Cox, J. E. Dorn, Metal Sci. J. 3, 221 (1969).
  • [15] J. Rösler, R. Joos, E. Arzt, Met. Trans. A 23A, 1521 (1992).
  • [16] O. D. Sherby, G. Gonzalez-Doncel, O. A. Ruano, Threshold stresses in particle-hardened materials, Creep and fracture of engineering materials and structures, J. C. Earthman and F. A. Mohamed (eds), TMS, 1997, pp. 9-18.
Uwagi
EN
1. This study was supported by Program for the Development of Strategic Core Materials, Republic of Korea government ministry of Trade, Industry and Energy.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7a40cc1-95a2-401c-8fd0-c459ae941f35
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.