PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of grinding media on the flotation behavior of fluorite using sodium oleate as a collector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grinding, an essential procedure before flotation, to some extent, determines the flotation behavior of minerals. In this study, the effect of grinding media on the flotation behavior of fluorite using sodium oleate (NaOl) as a collector was investigated via micro-flotation experiments, zeta potential measurements, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and X-ray photoelectron spectroscopy (XPS) analyses. The results indicated that, compared with the fluorite particles ground by ceramic media, the ones ground by cast iron media adsorbed less NaOl, resulting in lower flotation recovery. The lower flotation recovery of fluorite particles ground by cast iron media resulted from the coating of the hydrophilic Fe precipitates generated in the grinding, including Fe(0), Fe(OH)2, and Fe(OH)3on their surfaces. These Fe precipitates may cover the Ca active sites and increase the hydration membrane which can inhibit the further NaOl adsorption. This research reveals the effect of grinding media on the flotation behavior of fluorite and guides for media selection in disposing of fluorite ore.
Słowa kluczowe
Rocznik
Strony
556--565
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr., wz.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
  • Changsha Research Institute of Mining and Metallurgy Co., Ltd. Changsha 410012, People’s Republic of China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
  • School of Resources and Environmental Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
  • Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan 430081, People’s Republic of China
Bibliografia
  • ADAM, K., NATARAJAN, K.A., IWASAKI, I., 1984. Grinding media wear and its effect on the flotation of sulfide minerals. Int. J. Miner. Process., 22, 39-54.
  • ALIAGA, W., SAMPAIO, C.H., BRUM, I.A.S., FERREIRA, K.R.S., BATISTELLA, M.A., 2006. Flotation of high-grade fluorite in a short column under negative bias regime. Miner. Eng., 19, 1393-1396.
  • BRUCKARD, W.J., SPARROW, G.J., WOODCOCK, J.T., 2011. A review of the effects of the grinding environment on the flotation of copper sulphides. Int. J. Miner. Process., 100, 1-13.
  • BUCKLEY, A.N., WOODS, R., 1984. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite. Appl. Surf. Sci., 17, 401-414.
  • CORIN, K.C., SONG, Z.G., WIESE, J.G., O’CONNOR, C.T., 2018. Effect of using different grinding media on the flotation of a base metal sulphide ore. Miner. Eng., 126, 24-27.
  • DENG, J., WEN, S., XIAN, Y., LIU, J., BAI, S., 2013. New discovery of unavoidable ions source in chalcopyrite flotation pulp: Fluid inclusions. Miner. Eng., 42, 22-28.
  • DENG, J., LAI, H., CHEN, M., GLEN, M., WEN, S., ZHAO, B., LIU, Z., YANG, H., LIU, M., HUANG, L., GUAN, S., WANG, P., 2019. Effect of iron concentration on the crystallization and electronic structure of sphalerite/marmatite: A DFT study. Miner. Eng., 136, 168-174.
  • DENG, J., LIU, C., YANG, S., LI, H., LIU, Y., 2019. Flotation separation of barite from calcite using acidified water glass as the depressant. Colloids Surf., A, 579, https://doi.org/10.1016/j.colsurfa.2019.123605.
  • DONG, L., JIAO, F., QIN, W., ZHU, H., JIA, W., 2019. Activation effect of lead ions on scheelite flotation: Adsorption mechanism, AFM imaging and adsorption model. Sep. Purif. Technol., 209, 955-963.
  • FENG, B., LUO, X., WANG, J., WANG, P., 2015. The flotation separation of scheelite from calcite using acidified sodium silicate as depressant. Miner. Eng., 80, 45-49.
  • FENG, B., ZHONG, C., ZHANG, L., GUO, Y., WANG, T., HUANG, Z., 2020. Effect of surface oxidation on the depression of sphalerite by locust bean gum. Miner. Eng., 146, https://doi.org/10.1016/j.mineng.2019.106142.
  • GAO, Z., SUN, W., HU, Y., LIU, X., 2012. Anisotropic surface broken bond properties and wettability of calcite and fluorite crystals. Trans. Nonferrous Met. Soc. China, 22, 1203-1208.
  • GAO, Z., BAI, D., SUN, W., CAO, X., HU, Y., 2015. Selective flotation of scheelite from calcite and fluorite using a collector mixture. Miner. Eng., 72, 23-26.
  • GAO, Y., GAO, Z., SUN, W., HU, Y., 2016. Selective flotation of scheelite from calcite: A novel reagent scheme. Int. J. Miner. Process., 154, 10-15.
  • GUO, W., FENG, B., PENG, J., ZHANG, W., ZHU, X., 2019. Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc. J. Mater. Res. Technol. 80(1): 697-702.
  • HU, Y., WU, M., LIU, R., SUN, W., 2020. A review on the electrochemistry of galena flotation. Miner. Eng. 150, https://doi.org/10.1016/j.mineng.2020.106272.
  • HU, W., 1989. Flotation. Beijing, Metallurgical Industry Press, 10-13.
  • HUANG, G., GRANO, S., 2006. Galvanic interaction of grinding media with pyrite and its effect on floatation. Int. J. Miner. Process., 78, 182-197.
  • HUANG, L., ZENG, Q., HU, L., HU, Y., ZHONG, H., HE, Z., 2019. The contribution of long-terms static interactions between minerals and flotation reagents for the separation of fluorite and calcite. Miner., 9(11): 699-714.
  • JIANG, W., GAO, Z., KHOSO, S.A., GAO, J., SUN, W., PU, W., HU, Y., 2018. Selective adsorption of benzhydroxamic acid on fluorite rendering selective separation of fluorite/calcite. Appl. Surf. Sci., 435, 752-758.
  • JIN, S., ZHANG, L., HE, J., 2008. Review of reactions of manganese oxides with organic compounds and application of MnOx in environmental remediation. Acta Sci Circum, 28(12), 2394-2403.
  • JIN, S., SHI, Q., FENG, Q., ZHANG, G., CHANG, Z., 2018. The role of calcium and carbonate ions in the separation of pyrite and talc. Miner. Eng., 119, 205-211.
  • LI, X., IWASAKI, I., 1992. Effect of cathodic polarization on the floatability of chalcopyrite in the absence of oxygen. Miner. Metall. Process., 9, 1-6.
  • LI, C., GAO, Z., 2017. Effect of grinding media on the surface property and flotation behavior of scheelite particles. Powder Technol., 322, 386-392.
  • LI, C., GAO, Z., 2018. Tune surface physicochemical property of fluorite particles by regulating the exposure degree of crystal surfaces. Miner. Eng., 128, 123-132.
  • LONG, T., CHEN, Y., SHI, J., CHEN, W., ZHU, Y., ZHANG, C., BU, X., 2020. Effect of grinding media on the flotation of copper-activated marmatite. Physicochem. Probl. Miner. Process., 56, 229-237.
  • MIELCZARSKI, J.A., CASES, J.M., BOUQUET, E., BARRES, O., DELON, J.F., 1993. Nature and structure of adsorption layer on apatite contacted with oleate solution. 1. Adsorption and Fourier transform infrared reflection studies. Langmuir, 9, 2370-2382.
  • NIST XPS DATABASE, https://srdata.nist.gov/xps/selEnergyType.aspx.
  • PENG, Y., GRANO, S., FORNASIERO, D., RALSTON, J., 2003a. Control of grinding conditions in the flotation of chalcopyrite and its separation from pyrite. Int. J. Miner. Process., 69, 87-100.
  • PENG, Y., GRANO, S., FORNASIERO, D., RALSTON, J., 2003b. Control of grinding conditions in the flotation of galena and its separation from pyrite. Int. J. Miner. Process., 70, 67-82.
  • PENG, W., ZHANG, L., BAI, L., QIU, Y., 2014. Flotation research of a fluorite ore. Appl. Mech. Mater., 539, 781-784.
  • RABIEH, A., ALBIJANIC, B., EKSTEEN, J.J., 2017. Influence of grinding media and water quality on flotation performance of gold bearing pyrite. Miner. Eng., 112, 68-76.
  • SONG, S., LOPEZ-VALDIVIESO, A., MARTINEZ-MARTINEZ, C., TORRES-ARMENTA, R., 2006. Improving fluorite flotation from ores by dispersion processing. Miner. Eng., 19, 912-917.
  • STONE, A.T., MORGAN, J.J., 1984. Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with hydroquinone. Environ. Sci. Technol., 18(6), 450-456.
  • THERMO SCIENTIFIC XPS DATABASE, https://xpssimplified.com/elements/iron.php.
  • TIAN, M., GAO, Z., SUN, W., HAN, H., SUN, L., HU, Y., 2018. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. J. Colloid Interface Sci., 529, 150-160.
  • WANG, D., QIU, G., HU, Y., 2005. Resource processing. Beijing, Science Press, 246-248.
  • XU, L., HU, Y., DONG, F., GAO, Z., WU, H., WANG, Z., 2014. Anisotropic adsorption of oleate on diaspore and kaolinite crystals: Implications for their flotation separation. Appl. Surf. Sci., 321, 331-338.
  • YANG, S., PENG, T., LI, H., FENG, Q., QIU, X., 2016. Flotation mechanism of wolframite with varied components Fe/Mn. Miner. Process. Extr. Metall. Rev., 37(1): 34-41.
  • YAO, W., LI, M., CUI, R., JIANG, X., JIANG, H., DENG, X., LI, Y., ZHOU, S., 2018. Flotation behavior and mechanism of anglesite with salicyl hydroxamic acid as collector. JOM, 70, 2813-2818.
  • YAO, W., LI, M., ZHANG, M., CUI, R., JIANG, H., LI, Y., ZHOU, S., 2019. Effects of grinding media on flotation performance of calcite. Miner. Eng., 132, 92-94.
  • YAO, W., LI, M., ZHANG, M., CUI, R., SHI, J., NING, J., 2020. Effect of Zn2+ and its addition sequence on flotation separation of scheelite from calcite using water glass. Colloids Surf., A, 588. https://doi.org/10.1016/j.colsurfa.2019.124394.
  • YU, Y., MA, L., CAO, M., LIU, Q., 2017. Slime coatings in froth flotation: A review. Miner. Eng., 114, 26-36.
  • ZHANG, Y., SONG, S., 2003. Beneficiation of fluorite by flotation in a new chemical scheme. Miner. Eng., 16, 597-600.
  • ZHANG, C., SUN, W., HU, Y., TANG, H., YIN, Z., GUAN, Q., GAO, J., 2018. Investigation of two-stage depressing by using hydrophilic polymer to improve the process of fluorite flotation. J. Cleaner Prod., 193, 228-235.
  • ZHANG, X., HAN, Y., KAWATRA, S.K., 2020. Effects of grinding media on grinding products and flotation performance of sulfide ores. Miner. Process. Extr. Metall. Rev., https://doi.org/10.1080/08827508.2019.1692831.
  • ZHENG, S., SUN, Z., 2019. Non-metallic Minerals Processing and Application. Chemical Industry Press, Beijing.
  • ZHOU, W., MORENO, J., TORRES, R., VALLE, H., SONG, S., 2013. Flotation of fluorite from ores by using acidized water glass as depressant. Miner. Eng., 45, 142-145.
Uwagi
This work is financed by National Natural Science Foundation of China (Project No. 51704214 & 51704215).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7a26381-a00d-4336-8018-1d813164a14d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.