Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is well known that sound absorption and sound transmission properties of open porous materials are highly dependent on their airflow resistance values. Low values of airflow resistance indicate little resistance for air streaming through the porous material and high values are a sign that most of the pores inside the material are closed. The laboratory procedures for measuring airflow resistance have been stan- dardized by several organizations, including ISO and ASTM for both alternate flow and continuous flow. However, practical implementation of these standardized methods could be both complex and expensive. In this work, two indirect alternative measurement procedures were compared against the alternate flow standardized technique. The techniques were tested using three families of eco-friendly sound absorbent materials: recycled polyurethane foams, coconut natural fibres, and recycled polyester fibres. It is found that the values of airflow resistance measured using both alternative methods are very similar. There is also a good correlation between the values obtained through alternative and standardized methods.
Wydawca
Czasopismo
Rocznik
Tom
Strony
547--554
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab.
Twórcy
autor
- Research Institute for Integrated Coastal Zone Management-IGIC, Universitat Politecnica de Valencia Grao de Gandia 46730 (Valencia), Spain
autor
- Research Institute for Integrated Coastal Zone Management-IGIC, Universitat Politecnica de Valencia Grao de Gandia 46730 (Valencia), Spain
autor
- Institute of Acoustics, Univ. Austral de Chile Campus Miraflores, PO Box 567, Valdivia, Chile
autor
- Department of Physics, System Engineering and Signal Theory, Univ. of Alicante Mail Box 99; 03080 Alicante, Spain
Bibliografia
- 1. Alba J., del Rey R., Ramis J., Arenas J.P. (2011), An inverse method to obtain porosity fibre diameter and density of fibrous sound absorbing materials, Archives of Acoustics, 36, 3, 561-574.
- 2. Arenas J.P., Crocker M.J. (2010), Recent trends in porous sound absorbing materials for noise control, Sound and Vibration, 44, 7, 12-17.
- 3. Asdrubali F. (2006), Survey on the acoustical properties of new sustainable materials for noise control, Proceedings of Euronoise, Tampere, Finland.
- 4. Bies D.A., Hansen C.H. (1980), Flow resistance information for acoustical design, Applied Acoustics, 13, 5, 357-391.
- 5. Delany M.E., Bazley E.N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3, 2, 105-116.
- 6. del Rey R., Alba J., Berto L., Sanchis V. (2011a), Absorbent Acoustic Materials based in Naturals Fibers, ACUSTICUM 2011 EAA, Aalborg, Denmark.
- 7. del Rey R., Alba J., Ramis J., Sanchis V. (2011b), New absorbent acoustics materials from plastic bottle remnants, Materiales de Construccion, 61, 204, 547-558.
- 8. del Rey R., Alba J., Arenas J.P., Sanchis V. (2012), An empirical modelling of porous sound absorbing materials made of recycled foam. Applied Acoustics, 73, 604-609.
- 9. Doutres O., Salissou Y., Atalla N., Panneton R. (2010), Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a threemicrophone impedance tube, Applied Acoustics, 71, 6, 506-509.
- 10. Dragonetti R., Ianniello C., Romano A.R. (2011), Measurement of the resistivity of porous materials with an alternating air-flow method, Journal of the Acoustical Society of America, 129, 2, 753-764.
- 11. Fellah Z.E.A., Fellah M., Sebaa N., Lauriks W., Depollier C. (2006), Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves, Journal of Acoustic Society of America, 119, 1926-1928.
- 12. Garai M., Pompoli F. (2005), A simple empirical model of polyester fibre materials for acoustical applications, Applied Acoustics, 66, 12, 1383-1398.
- 13. Iannace G., Ianniello C., Maffei L., Romano R. (1999), Steady-state air-flow and acoustic measurement of the resistivity of loose granular materials, Journal of the Acoustical Society of America, 106, 3, 1416-1419.
- 14. Ingard K.U., Dear T.A. (1985), Measurement of acoustic flow resistance, Journal of Sound and Vibration, 103, 4, 567-572.
- 15. ISO (1991), 9053:1991. Acoustics Materials for acoustical applications. Determination of airflow resistance, International Organization for Standardization, Geneva.
- 16. McIntosh J.D., Zuroski M.T., Lambert R.F. (1990), Standing wave apparatus for measuring fundamental properties of acoustic materials in air, Journal of the Acoustical Society of America, 88, 4, 1929-1938.
- 17. Nick A., Becker U., Thoma W. (2002), Improved acoustic behavior of interior parts of renewable resources in the automotive industry, Journal of Polymers and the Environment, 10, 3, 115-118.
- 18. Panneton R., Olny X. (2006), Acoustical determination of the parameters governing viscous dissipation in porous media, Journal of the Acoustical Society of America, 119, 4, 2027-2040.
- 19. Picard M.A., Solana P., Urchueguia J.F. (1998), A method of measuring the dynamic flow resistance and the acoustic measurement of the effective static flow resistance in stratified rockwool samples, Journal of Sound and Vibration, 216, 3, 495-505.
- 20. Ramis J., Alba J., del Rey R., Escuder E., Sanchis V. (2010), New absorbent material acoustic based on kenaf’s fibre, Materiales de Construccion, 60, 299, 133-143.
- 21. Ren M., Jacobsen F. (1993), A method of measuring the dynamic flow resistance and reactance of porous materials, Applied Acoustics, 39, 265-276.
- 22. Sebaa N., Fellah Z.E.A., Fellah M., Lauriks W., Depollier C. (2005), Measuring flow resistivity of porous material via acoustic reflected waves, Journal of Applied Physics, 98, 084901.
- 23. Stinson R., Daigle A. (1983), Electronic system for the measurement of flow resistance, Journal of the Acoustical Society of America, 83, 2422-2428.
- 24. Woodcock R., Hodgson M. (1992), Acoustic methods for determining the effective flow resistivity of fibrous materials, Journal of Sound and Vibration, 153, 1, 186-191.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7a0ff0f-2524-4ad3-a9c0-9270eecf0da5