PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indoor and Outdoor Concentrations of Particulate Matter and Gaseous Pollutants on Different Floors of a University Building: A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, we investigate the changes in the concentrations of suspended particulate matter (PM10 and PM2.5) and selected gaseous pollutants (VOCs, H2S) in the atmospheric air inside and outside a 9-story building, which is intended primarily for the teaching activities. The purpose was to determine whether the air quality inside the building is directly dependent on the outside air quality. The analysis also included the influence of the height of the building, its location and environment, as well as meteorological conditions. No clear correlation was found between the measured parameters inside and outside the building. The height above ground (the floor on which the measurements were made) was found to have a significant influence on the concentration of each pollutant. Wind direction was also found to have a very important impact on the air quality inside the building. A strong relationship was observed on the leeward side between the concentration of impurities on the inside and outside of the building.
Rocznik
Strony
162--173
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Faculty of Architecture, Civil and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Lodz, Poland
  • Faculty of Architecture, Civil and Environmental Engineering, Lodz University of Technology, Al. Politechniki 6, 90-924 Lodz, Poland
Bibliografia
  • 1. Cichowicz R., Wielgosiński G. 2015a. Effect of meteorological conditions and building location on CO2 concentration in the university campus. ECOL CHEM ENG S. 22(4):513–525. DOI: 10.1515/eces-2015–0030.
  • 2. Cichowicz R., Wielgosiński G. 2015b. Effect of urban traffic on the immission of carbon dioxide in the university campus. ECOL CHEM ENG S. 22(2): 189–200. DOI: 10.1515/eces-2015–0010.
  • 3. Cichowicz R., Wielgosiński G., Fetter W. 2020. Effect of wind speed on the level of particulate matter PM10 concentration in atmospheric air during winter season in vicinity of large combustion plant. Journal of Atmospheric Chemistry https://doi.org/10.1007/s10874–020–09401-w.
  • 4. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 On Ambient Air Quality and Cleaner Air for Europe (OJ L 152, 11.6.2008).
  • 5. Fang J., Tang X., Xie R., Han F. 2020. The effect of manufacturing agglomerations on smog pollution. Structural Change and Economic Dynamics Vol. 54, Pages 92–101 https://doi.org/10.1016/j.strueco.2020.04.003.
  • 6. Frankowski J. 2020. Attention: smog alert! Citizen engagement for clean air and its consequences for fuel poverty in Poland. Energy and Buildings. Vol. 207, 109525. https://doi.org/10.1016/j.enbuild.2019.109525.
  • 7. Frąk, M., Majewski, G. & Zawistowska, K. 2014. Analysis of the quantity of microorganisms adsorbed on particulate matter PM10. Scientific Review Engineering and Environmental Sciences, 23 (2), 140–149.
  • 8. Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, et al. 2008. Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmos Environ 42, 6597e605. https://doi.org/10.1515/sjph-2017–0031.
  • 9. Fuks, K., Moebus, S., Hertel, S., Viehmann, A., Nonnemacher, M., Dragano, N., & Heinz Nixdorf Recall Study Investigative Group. 2011. Long-Term Urban Particulate Air Pollution, Traffic Noise, and Arterial Blood Pressure. Environmental Health Perspectives, 119(12), 1706–1711. https://doi.org/10.1289/ehp.1103564.
  • 10. Hamra, G. B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J. M., & Loomis, D. 2014. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Environmental Health Perspectives, 122(9), 906–911. https://doi.org/10.1289/ehp.1408092.
  • 11. Hong, B., Lin, B., & Qin, H. 2017. Numerical investigation on the coupled effects of building-tree arrangements on fine particulate matter (PM2.5) dispersion in housing blocks. Sustainable Cities and Society, 34, 358–370. https://doi.org/10.1016/J.SCS.2017.07.005.
  • 12. IARC, 2016. IARC (International Agency for Research on Cancer) Monographs on the Evaluation of Carcinogenic Risks to Human. http://monographs.iarc.fr/ENG/Classification/latest_classif.php. (Accessed 10.08.2020).
  • 13. Lewandowska A.U., Bełdowska M., Witkowska A., Falkowska L., Wiśniewska K. 2018. Mercury bonds with carbon (OC and EC) in small aerosols (PM1) in the urbanized coastal zone of the Gulf of Gdansk (southern Baltic). Ecotoxicology and Environmental Safety. Vol. 157, Pages 350–357. https://doi.org/10.1016/j.ecoenv.2018.03.097.
  • 14. Lim J.-M., Jeong J.-H., Lee J.-H., Moon J.-H., Chung Y.-S., Kim K.-H. 2011. The analysis of PM2.5 and associated elements and their indoor/outdoor pollution status in an urban area. Indoor Air, 21(2), 145–155. https://doi.org/10.1111/j.1600–0668.2010.00691.x.
  • 15. Meier R., Eeftens M., Phuleria H. C., Ineichen A., Corradi E., Davey M., & Künzli N. 2015. Differences in indoor versus outdoor concentrations of ultrafine particles, PM2.5, PM absorbance and NO2 in Swiss homes. Journal of Exposure Science and Environmental Epidemiology, 25(5), 499–505. https://doi.org/10.1038/jes.2015.3.
  • 16. Mohammadyan M., Ghoochani M., Kloog I., Abdul-Wahab S. A., Yetilmezsoy K., Heibati B., Godri Pollitt K. J. 2017. Assessment of indoor and outdoor particulate air pollution at an urban background site in Iran. Environmental Monitoring and Assessment, 189(5), 235. https://doi.org/10.1007/s10661–017–5951–1.
  • 17. Molnar P., Bellander T., Sallsten G., Boman J., 2007. Indoor and outdoor concentrations of PM2.5 trace elements at preschools and schools in Stockholm, Sweden. J. Environ. Monit. 9, 348–357. https://doi.org/10.1039/B616858B.
  • 18. Nawrot, T. S., Perez, L., Kunzli, N., Munters, E., & Nemery, B. 2011. Public health importance of triggers of myocardial infarction: a comparative risk assessment. The Lancet, 377(9767), 732–740. https://doi.org/10.1016/S0140–6736(10)62296–9.
  • 19. Pallares S., Gomez E., Martínez A., Jordan M., 2019. The relationship between indoor and outdoor levels of PM10 and its chemical composition at schools in a coastal region in Spain. Heliyon 5, e02270, https://doi.org/10.1016/j.heliyon.2019.e02270.
  • 20. Pira, E., & Piolatto, P. G. 2013. Outdoor air pollution and lung cancer: what now?. Epidemiology, Biostatistics and Public Health, 10(4), https://doi.org/10.2427/9444.
  • 21. Qiu, H., Tian, L. W., Pun, V. C., Ho, K., Wong, T. W., & Yu, I. T. S. 2014. Coarse particulate matter associated with increased risk of emergency hospital admissions for pneumonia in Hong Kong. Thorax, 69(11), 1027–1033. https://doi.org/10.1136/thoraxjnl-2014–205429.
  • 22. Raysoni A. U., Stock T. H., Sarnat J. A., Chavez M. C., Sarnat S. E., Montoya T., Holguin F., Li W-W. 2017. Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools. Environmental Pollution 231, 681–693. http://dx.doi.org/10.1016/j.envpol.2017.08.065.
  • 23. Romagnoli P., Balducci C., Perilli M., Vichi F., Imperiali A., Cecinato A. 2016. Indoor air quality at life and work environments in Rome, Italy. Environmental Science and Pollution Research, 23(4), 3503–3516. https://doi.org/10.1007/s11356–015–5558–4.
  • 24. Su F-Ch., Mukherjee B., Batterman S. 2013. Determinants of personal, indoor and outdoor VOC concentrations: An analysis of the RIOPA data. Environmental Research, 126, 192–203. http://dx.doi.org/10.1016/j.envres.2013.08.005.
  • 25. Tong, Z., Chen, Y., Malkawi, A., Liu, Z., & Freeman, R. B. 2016. Energy saving potential of natural ventilation in China: The impact of ambient air pollution. Applied Energy, 179, 660–668. https://doi.org/10.1016/J.APENERGY.2016.07.019.
  • 26. Widziewicz K., Rogula-Kozłowska W., Loska K., Kociszewska K., Majewski G. 2018. Health Risk Impacts of Exposure to Airborne Metals and Benzo(a)Pyrene during Episodes of High PM10 Concentrations in Poland. Biomedical and Environmental Sciences, 31(1), 23–36. https://doi.org/10.3967/bes2018.003.
  • 27. World Health Organization 2013. Review of evidence on health aspects of air pollution –REVIHAAP Project Retrieved from. World Health Organization 309. http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-healthaspects-of-air-pollution-revihaap-project-finaltechnical-report.
  • 28. Wu M. X., Basu R., Malig B., Broadwin R., Ebisu K., Gold B. E., Qi L., Derby C., Green S. R., 2017. Association between gaseous air pollutants and inflammatory, hemostatic and lipid markers in a cohort of midlife women, Environment International, Vol. 107, Pages 131–139, ISSN 0160–4120, https://doi.org/10.1016/j.envint.2017.07.004.
  • 29. Zeger, S. L., Dominici, F., McDermott, A., & Samet, J. M. (2008). Mortality in the Medicare Population and Chronic Exposure to Fine Particulate Air Pollution in Urban Centers (2000–2005). Environmental Health Perspectives, 116(12), 1614–1619. https://doi.org/10.1289/ehp.11449.
  • 30. Zhu Y., Hinds W.C., Krudysz M., Kuhn T., Froines J., Sioutas C., 2005. Penetration of freeway ultrafine particles into indoor environments. Aerosol Sci. 36, 303–322. https://doi.org/10.1016/j.jaerosci.2004.09.007.
  • 31. Zwoździak A., Sówka I., Krupińska B., Zwoździak B., Nych A. 2013. Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wroc1aw, Poland? Building and Environment 66, 173–180. http://dx.doi.org/10.1016/j.buildenv.2013.04.023.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e79bbfd9-aecb-4af3-86bf-0dedf47c85ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.