PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Segmentation of multigradation images based on spatial connectivity features

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Segmentacja obrazów wielogradacyjnych na podstawie cech łączności przestrzennej
Języki publikacji
EN
Abstrakty
EN
The article aims to study the multi-level segmentation process of images of arbitrary configuration and placement based on features of spatial connectivity. Existing image processing algorithms are analyzed, and their advantages and disadvantages are determined. A method of organizing the process of segmentation of multi-gradation halftone images is developed and an algorithm of actions according to the described method is given.
PL
Artykuł ma na celu zbadanie procesu wielopoziomowego segmentacji obrazów o dowolnej konfiguracji i rozmieszczeniu w oparciu o cechy łączności przestrzennej. Przeanalizowano istniejące algorytmy przetwarzania obrazu oraz określono ich zalety i wady. Opracowano metodę organizacji procesu segmentacji wielogradacyjnych obrazów półtonowych i przedstawiono algorytm działań zgodnie z opisaną metodą.
Rocznik
Strony
47--50
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • State University of Infrastructureand Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, Kyiv, Ukraine
  • State University of Infrastructureand Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, Kyiv, Ukraine
  • State University of Infrastructureand Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, Kyiv, Ukraine
  • Kyiv Institute of Railway Transport, Kyiv, Ukraine
  • State University of Infrastructureand Technology, Artificial Intelligence Systems and Telecommunication Technologies Department, Kyiv, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • Vinnytsia National Technical University, Vinnytsia, Ukraine
  • D.Serikbayev East Kazakhstan State Technical University,Ust-Kamenogorsk, Kazakhstan
  • Astana Medical University, Astana, Kazakhstan
Bibliografia
  • [1] Avrunin O. G. et al.: Features of image segmentation of the upper respiratory tract for planning of rhinosurgical surgery. 2019 IEEE 39th International Conference on Electronics and Nanotechnology, ELNANO 2019, 485–488.
  • [2] Avrunin O. G. et al.: Research Active Posterior Rhinomanometry Tomography Method for Nasal Breathing Determining Violations. Sensors 21, 2021, 8508 [http://doi.org/10.3390/s21248508].
  • [3] Bradski G., Kaehler A.: Learning Open CV, second edition. 2013.
  • [4] Burgener F. et al.: Differential Diagnosis in Computed Tomography, 2011.
  • [5] Campbell J.: Human Medical Thermography, 2022.
  • [6] Comaniciu D., Meer P.: Mean shift analysis and applications. IEEE International Conference on Computer Vision 2, 1999, 1197.
  • [7] Comaniciu D., Meer P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 603–619.
  • [8] Comaniciu D., Ramesh V., Meer P.: Real-Time Tracking of Non-Rigid Objects Using Mean Shift. Conference on CVPR 2, 2000, 1–8.
  • [9] Gonzalez R., Woods R: Digital Image Processing. Technosphere, 2012.
  • [10] Haralik R. M.: Statistical and structural approaches to the description of textures. Proceedings of the Institute of Electronics and Radio Engineering, 1979, 98–120.
  • [11] Kurmi Y., Chaurasia V.: Multifeature-based medical image segmentation. Sensors, 2018.
  • [12] Linda G. S. Stockman G. C.: Computer Vision, 2001.
  • [13] Orazayeva A. et al.: Biomedical image segmentation method based on contour preparation. Proc. SPIE 12476, 2022, 1247605 [http://doi.org/10.1117/12.2657929].
  • [14] Rodriguez-Lozano F. J., León-García F., Ruiz de Adana M., Palomares J. M., Olivares J.: Non-Invasive Forehead Segmentation in Thermographic Imaging. Sensors 19, 2019, 4096 [http://doi.org/10.3390/s19194096].
  • [15] Romanyuk O. N.: A function-based approach to real-time visualization using graphics processing units. Proc. SPIE 11581, 2020, 115810E [http://doi.org/10.1117/12.2580212].
  • [16] Rother С., Kolmogorov V., Blake Grabcut A.: Interactive foreground extraction using iterated graph cuts, 2004.
  • [17] Timchenko L. I. et al.: Q-processors for real-time image processing. Proc. SPIE 11581, 2020, 115810F [http://doi.org/10.1117/12.2580230].
  • [18] Timchenko L. I., Kutaev Y. F.: Method and organization of image extraction. Patent 2024939С1 RF, MKI G 06 K 9/00, 1992-07-08, 1992.
  • [19] Vapnik V.N., Chervonenkis A.Y.: Pattern recognition theory (statistical learning problems). Science, 1974.
  • [20] Wójcik W., Smolarz A.: Information Technology in Medical Diagnostics (1st ed.). CRC Press 2017 [http://doi.org/10.1201/9781315098050].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e79854c9-14e8-4b45-8669-08869d3382d3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.