PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Disturbing effect of different dental materials on the MRI results : preliminary study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of different dental materials used for conserving reconstruction of teeth on the magnetic resonance imaging assessed on the basis of changes in NMR proton relaxation T1 of the physiological environment represented by the physiological salt solution has been studied. The dental materials studied varied in a wide range of chemical compositions: composites (Silux Plus made by 3M Dental, Tetric Cream made by Ivoclar-Vivadent), pH controlling composite (Ariston pHc made by Vivadent), hybrid glass ionomer (Vitremer made by 3M Dental), compomer (Hytac made by ESPE), amalgamate without the gamma phase (Septalloy made by Septodont), chemocured phosphate cement (Agatos made by Chema-Elektromet), phosphate cement with addition of silver (Argil made by Spora-Dental). The reference standard was a 0.9% physiological solution of NaCl. The relative deviations of the spin-lattice relaxation time vary from –18.5% to +24.0%. From the point of view of magnetic resonance imaging, the materials significantly disturbing the tomographic images are the amalgamate Septalloy-Septodont and glass ionomer Vitremer-3M Dental, while the composite Tetric Cream-Vivadent has insignificant effect.
Rocznik
Strony
49--55
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
  • Department of Pediatric Dentistry K. Marcinkowski, University of Medical Science, Poznań, Poland
  • Department of Pediatric Dentistry K. Marcinkowski, University of Medical Science, Poznań, Poland
Bibliografia
  • [1] YOSHIKAWA K., OHSAKA A., Proton 1H and 13C NMR spectroscopic study of rat organs, Physiol. Chem. Phys., 1980, Vol. 1296), 515–520.
  • [2] OLSEN D.R, LYNG H., PETERSEN S., ROFSTAD E.K., Spinlattice relaxation time on inorganic phosphate in human tumor xenografts measured in vivo by 31P-magnetic resonance spectroscopy. Influence of oxygen tension, Acta Oncol., 1995, Vol. 34(3), 339–343.
  • [3] JARA H., YU B.C., CARUTHERS S.D., Angiografia MRI, Magn. Reson. Med., 1999, Vol. 41, 575–590.
  • [4] STUBER M., BOTNAR R.M., DANIAS P.G., SODICKSON D.K., KISSINGER K.V., VAN CAUTEREN M., MANNING W.J., Doubleoblique free-breathing high resolution three-dimensional coronary magnetic resonance angiography, J. Am. Coll. Cardiol., 1999, Vol. 34(2), 524–531.
  • [5] VAN ZIJL P.C.M, ELEFF S.M., ULATOWSKI J.A., OJA J.M.E., ULUĞ A.M., TRAYSTMAN R.J., KAUPPINEN R.A., Quantitative assessment of blood flow, blood volume and blood oxygenation effects in functional magnetic resonance imaging, Nat. Med., 1998, Vol. 4, 159–167.
  • [6] YAMATO T., Analysis of functional MRI data using mutual information, Phys. Rev. A, 2001, Vol. 63, 46105–46112.
  • [7] WELLS III W.M., GRIMSON W.E.L., KIKINIS R., JOLESZ F.A., Adaptive Segmentation of MRI data, IEEE Trans. Med. Imaging, 1996, Vol. 15(4), 429–442.
  • [8] MARAMATTOM B.V., GIANNINI C., MANNO E.M., WIJDICKS E.F., CAMPEAU N.G., Gliomatosis cerebri angiographically mimicking central nervous system angiitis: case report, Neurosurgery, 2006, Vol. 58(6), E1209–E1210.
  • [9] BODE M.K., RUOHONEN J., NIEMINEN M.T., PUHTIEN J., Potential of diffusion imaging in brain tumors: a review, Acta Radiol., 2006, Vol. 47(6), 585–594.
  • [10] MISGLED T., KERNSCHENSTEINER M., Neuroimaging, 2006, Vol. 7, 449.
  • [11] DE KEIZER R.J., VIELVOYE G.J., DE WOLFF-ROUENDAAL D., KAKEBEEKE-KEMME H.M., MRI in eye tumors, Doc. Ophthalmol., 1989, Vol. 73(1), 93–100.
  • [12] REYNOLDS R.A., CT Scanning for dental implantology, RAD Magazine, 1999, Vol. 25(285), 44–46.
  • [13] DZIUBA A., RUTKOWSKA-KUCHARSKA A., HADZIK A., RUDZIŃSKI M., GARCAREK J., Magnetic resonance imaging (MRI) for assessment of differences in geometrical parameters in muscules stabilizing vertebral column in young and older persons, Case study. Acta Bioeng. Biomech., 2010, Vol. 12(2), 42–51.
  • [14] GZIK M., WOLAŃSKI W., TEJSZERSKA D., Experimental determination of cervical spine mechanical properties, Acta Bioeng. Biomech., 2008, Vol. 10(4), 50–54.
  • [15] BEHR M., FELLNER C., BAYREUTHER G., LEIBROCK A., HELD P., FELLER F., HANDLE G., Mg of the TMJ: Artefacts caused by dental alloys, Eur. J. Prosthodont. Restor. Dent., 1996, Vol. 4(3), 111–115.
  • [16] GRAY C.F., REDPATH T.W., SMITH F.W., Low-field magnetic resonance imagining for implant dentistry, Dentomaxillofac. Radiol., 1998, Vol. 27(4), 225–229.
  • [17] JURGA J., KULCZYK T., KUŚMIA S., LIMANOWSKA-SHAW H., The possible use of magnetic resonance for visualizing the mineral content of enamel and dentine, Dent. Forum, 2004, Vol. 1(30), 57–60.
  • [18] KOCZOROWSKI R., TRITT-GOC J., The application of magnetic resonance microimaging in dentistry, Stomatol. Współcz., 2002, Vol. 9 (Suppl. 1), 25–29.
  • [19] SKALERIČ U., DOLINŠEK J., STEPISNIK J., CEVE P., SCHARA M., NMR Imaging in Dentistry: Relaxation and Diffusion Studies, Adv. Dent. Res., 1987, Vol. 1(1), 85–87.
  • [20] SCHREINER L.J., CAMERON I.G., FUNDUK N., MILJKOVIĆ L., PINTAR M.M., KYDON D.N., Proton NMR spin grouping and exchange in dentin, Biophys. J., 1991, Vol. 59(3), 629–639.
  • [21] OLT S., JACKOB P.M., Contrast-enhanced dental MRI for visualization of teeth and jaw, Magn. Reson. Med., 2004, Vol. 52(1), 174–176.
  • [22] SILWOOD C.J.L., LYNCH E., CLAXSON A.W.D., GROOTVELD M.C., 1H and 13C NMR Spectroscopic Analysis of Human Saliva, J. Dent. Res., 2002, Vol. 81(6), 422–427.
  • [23] JAISSON M., LESTRIEZ P., TAIAR R., DEBRAY K., Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads, Acta Bioeng. Biomech., 2011, Vol. 13(4), 85–91.
  • [24] GROOTVELD M.C., SILWOOD C.J.L., 1H NMR analysis as a diagnostic probe for human saliva, Biochem. Biophys. Res. Commun., 2004, Vol. 15(2), 377–381.
  • [25] GROOTVELD M.C., SILWOOD C.J.L., LYNCH E., High resolution 1H NMR investigations of the oxidative consumption of salivary biomolecules by ozone: relevance to the therapeutic applications of this agent in clinical dentistry, Biofactors., 2006, Vol. 27 (1–4), 5–18.
  • [26] SHAFIEI F., HONDA E., TAKAHASHI H., SASAKI T., Artifacts from dental casting alloys in magnetic resonance imaging, J. Dent. Res., 2003, Vol. 82(8), 602–606.
  • [27] SVENDEN P., QUIDING L., LANDHAL I., Blackout and other artifacts in computed tomography caused by fillings in teeth, Neuroradiology, 1980, Vol. 19(5), 229–234.
  • [28] ZEZE R., KAGAWA T., SHIRAKI H., OGAWA K., WADA T., HABU T., MORI S., Influence of Dental Materials on 1.5 Tesla MRI-Observation of Horizontal Images Obtained by the SE Method, J. Fukuoka Dent. College., 1996, Vol. 23(4), 461–469.
  • [29] MALIK A.S., BOYKO O., AKTAR N., YOUNG W.F., A comparative study of MR imaging profile of titanium pedicle screws, Acta Radiol., 2001, Vol. 42(3), 291–293.
  • [30] VACCARO A.R., CHESNUT R.M., SCUDERI G., HEALY J.F., MASSIE J.G.B., GARFIN S.R., Metallic spinal artifacts in magnetic resonance, Spine, 1994, Vol. 19(11), 1237–1242.
  • [31] SUH J.S., JEONG E.K., SHIN K.H., CHO J.H., NA J.B., KIM D.H., HAN C.D., Minimizing artifacts caused by metallic implants at MR imaging: experimental and clinical studies, Am. J. Roentgenol., 1998, Vol. 171(5), 1207–1213.
  • [32] RUDISCH A., KREMSER C., PEER S., KATHERIN A., JUDMAIER W., DANIAUX H., Metallic artifacts in magnetic resonance imaging of patients with spinal fusion. A comparison of implant materials and imaging sequences, Spine, 1998, Vol. 23(6), 692–699.
  • [33] VIANO A.M., GRÖNEMEYER S.A., HALILOGLU M. HOFFER M.A., Improved MR imaging for patients with metallic implants, Magn. Reson. Imaging, 2000, Vol. 18(3), 287–295.
  • [34] FERRACANE J.L., Current trends in dental composites, Crit. Rev. Oral. Biol. M, 1995, Vol. 6(4), 302–318.
  • [35] BENNETT L.H., WANG P.S., DONAHUE M.J., Artifacts in magnetic resonance imaging from metals, J. Appl. Phys., 1996, Vol. 79(8), 4712–4714.
  • [36] GANAPATHI M., JOSEPH G., SAVAGE R., JONES A.R., TIMMS B., LYONS K., MRI susceptibility artefacts related to scaphoid screws: the effect of screw type, screw orientation and imaging parameters, J. Hand. Surg. Br, 2002, Vol. 27(2), 165–170.
  • [37] TEITELBAUM G.P., BRADLEY W.G. JR., KLEIN B.D., MR imaging artifacts, ferromagnetism, and magnetic torque of intravascular filters, stents, and coils, Radiology, 1988, Vol. 166(3), 657–664.
  • [38] BLANKENDTEIN F.H., TRUONG B., THOMAS A., SCHRÖDER R.J., NAUMANN M., Signallöschung im MRT-Bild, verursacht durch intraoral verankerte dentale Magnetwerkstoffe, Fortschr. Röntgenstr., 2006, Vol. 178(8), 787–793.
  • [39] CARR D.H., BROWN J., BYDDER G.M. WEINMANN H.J., SPECK U., THOMAS D.J., YOUNG I.R., Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours, Lancet, 1984, Vol. 1, 8375, 484–486.
  • [40] AL-FAWAZ A.A., AWLIYA W.Y., The effect of three finishing systems on three esthetic restorative materials, Saudi Dent. J., 2003, Vol. 15(2), 104–106.
  • [41] SCHUHMACHER J.H, CLORIUS J.H., SEMMLER W., HAUSER H., MATYS E.R., MAIRE-BORST W., HULL W.E., NMR relaxation times T1 and T2 of water in plasma from patients with lung carcinoma: correlation of T2 with blood sedimentation rate, Magn. Reson. Med., 1987, Vol. 5(6), 537–547.
  • [42] DAMADIAN R., ZANER K., HOR D., DIMAIO T., Human tumors detected by nuclear magnetic resonance, Proc. Natl. Acad. Sci USA, 1974, Vol. 71(4), 1471–1473.
  • [43] ROUSSEAU V., POULIQUEN D., DARCEL F., JALLET P., LE JEUNNE J.J., NMR investigation of experimental chemical induced brain tumors in rats, potential of a superparamagnetic contrast agent (MD3) to improve diagnosis, MAGMA, 1998, Vol. 6(1), 13–21.
  • [44] HOEHN-BERLAGE M., NORRIS D., BOCKHORST K., ERNESTUS R.I., KLOIBER O., BONNEKOH P., LEIBFRITZ D., HOSSMANN K.A., T1 snapshot FLASH measurement of rat brain glioma: kinet ics of the tumor-enhancing contrast agent manganese (III) tetraphenylporphine sulfonate, Mang. Reson. Med., 1992, Vol. 27(2), 201–213.
  • [45] CAMERON I.L., ORD V.A., FULLERTON G.D., Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters, Magn. Reson. Imaging, 1984, Vol. 2(2), 97–106.
  • [46] BOTTOMLEY P.A., HARDY C.J., ARGERSINGER R.E., ALLENMOORE G., A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic?, Med. Phys., 1987, Vol. 14(1), 1–37.
  • [47] BIAGINI C., Role of magnetic resonance imaging in the tissue characterization of tumors, Radiol. Med., 1986, Vol. 72(6), 379–392.
  • [48] MACDONALD H.L., BELL B.A, SMITH M.A., KEAN D.M., TOCHER J.L., DOUGLAS R.H.B., MILLER J.D., BEST J.J.K., Correlation of human NMR T1 values measured in vivo and brain water content, Br. J. Radiol., 1986, Vol. 59(700), 355–357.
  • [49] Floyd R.A., Yoshida T., Leigh J.S. Jr., Changes of tissue water proton relaxation rates during early phases of chemical carcinogenesis, Proc. Natl. Acad. Sci. USA, 1975, Vol. 72(1), 56–58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e794b081-8b99-42e7-ac24-e1c798846908
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.