PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie muszli morskich jako kruszywa w betonach wodoprzepuszczalnych

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
The use of marine shells as aggregates in pervious concretes
Języki publikacji
PL EN
Abstrakty
PL
Odzyskiwanie odpadów stanowi obecnie korzystne rozwiązanie z powodów technicznych i ekonomicznych. Celem tego badania jest ocena możliwości użycia muszli morskich do produkcji ekologicznego materiału odpowiadającego na problemy środowiskowe. Badania przedstawione w pracy skupiają się na zastąpieniu naturalnych kruszyw muszlami z recyklingu i badaniu ich wpływu na właściwości betonu wodoprzepuszczalnego. W tym celu przygotowano sześć mieszanek betonowych, z których trzy oparte były na naturalnych kruszywach z wapienia. Betony te miały porowatość 20% i różne zawartości cementu: 250, 300 i 350 kg/m3. Pozostałe trzy betony miały identyczne składy, z tym że zamiast naturalnych kruszyw zastosowano kruszywa z pokruszonych muszli. Otrzymane wyniki pokazują, że zastosowanie kruszonych muszli znacznie wpływa na właściwości badanych betonów. Wszystkie mieszanki betonowe wykazują duże wartości opadu stożka i małą gęstość. Zastosowanie kruszyw z muszli poprawia wytrzymałość mechaniczną, zwłaszcza wytrzymałość na rozciąganie w stanie stwardniałym. Mimo swojego kształtu, kruszywa z muszli użyte w tym badaniu nie wpływają na porowatość betonu, co powoduje uzyskaniem betonów o dobrej przepuszczalności.
EN
Waste recovery is now a favourable solution for technical and economic reasons. The purpose of this study is the valuation of marine co-products - seashells, whose goal is to produce an eco-material that responds to the environmental problem. The experimental study focuses on the idea of replacing natural aggregates with recycled shell aggregates and studying their influence on the properties of pervious concrete. For this purpose, six concrete mixtures were prepared, where three of them were based on natural crushed limestone aggregates with 20% of porosity but had different dosages of cement 250, 300, and 350 kg/m3. The other three concretes have identical compositions, except that crushed shell aggregates substitute the natural aggregates. The obtained results are showing that the use of crushed shells considerably influences the properties of the studied concretes. In the fresh state, all concretes present high slump values and low density. Using shell aggregates improves the mechanical resistance, especially the tensile strength, by bending for the hardened state. Despite their shapes, the shell aggregates used in this study do not affect the concrete porosity, and consequently, draining concretes with good permeability have been obtained.
Czasopismo
Rocznik
Strony
76--91
Opis fizyczny
Bibliogr. 43 poz., il., tab.
Twórcy
  • Materials, Geomaterials and Environment Laboratory (LMGE), Faculty of Technology, Department of Civil Engineering, Badji Mokhtar - Annaba University, Algeria
  • Materials, Geomaterials and Environment Laboratory (LMGE), Faculty of Technology, Department of Civil Engineering, Badji Mokhtar - Annaba University, Algeria
  • Materials, Geomaterials and Environment Laboratory (LMGE), Faculty of Technology, Department of Civil Engineering, Badji Mokhtar - Annaba University, Algeria
  • Materials, Geomaterials and Environment Laboratory (LMGE), Faculty of Technology, Department of Civil Engineering, Badji Mokhtar - Annaba University, Algeria
Bibliografia
  • 1. M. Kacemi, Protection of the coast in Algeria between management and legislation The case of the industrial center of Arzew (Oran, Algeria). law and society, 73, 687-701 (2009). https://www.cairn.info/revue-droitet-societe1-2009-3-page-687.htm
  • 2. E. Ghorbel, G. Wardeh, Influence of recycled coarse aggregates incorporation on the fracture properties of concrete. Constr. Build. Mater, 154, 51-60 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.183
  • 3. Z. Zhao, J. Xiao, Z. Duan, J. Hubert, S. Grigoletto, L. Courard, Performance and durability of self-compacting mortar with recycled sand from crushed brick. Build. Engin, 57, 104867 (2022). https://doi.org/10.1016/j.jobe.2022.104867
  • 4. L. Berredjem, N. Arabi, L. Molez, Mechanical and durability properties of concrete based on recycled coarse and fine aggregates produced from demolished concrete. Constr. Build. Mater, 246, 118421 (2020). https://doi.org/10.1016/j.conbuildmat.2020.118421.
  • 5. N. Arabi, H. Meftah, L. Berredjem, Valorization of recycled materials in development of self-compacting concrete: Mixing recycled concrete aggregates - Windshield waste glass aggregates. Constr. Build. Mater. 209, 364-376 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.024.
  • 6. K.H. Mo, U.J. Alengaram, M.Z. Jumaat, S.C. Lee, W.I. Goh, C.W. Yuen, Recycling of seashell waste in concrete: A review. Constr. Build. Mater. 162, 751-764 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.009
  • 7. S. Muthu Lakshmi, S. Geetha, M. Selvakumar, Effective usage of seashell waste to improve the strength characteristics. Mater. Tod: Proce. 65, 484-488 (2022). https://doi.org/10.1016/j.matpr.2022.02.647
  • 8. G. O. Bamigboye, A. T. Nworgu, A. O. Odetoyan, M. Kareem, D. O. Enabulele, D. E. Bassey, Sustainable use of seashells as binder in concrete production: Prospect and challenges. J. Build. Engin. 34, 101864 (2021). https://doi.org/10.1016/j.jobe.2020.101864
  • 9. Y. Zhang, D. Chen, Y. Liang, K. Qu, K. Lu, S. Chen, M. Kong, Study on engineering properties of foam concrete containing waste seashell. Constr. Build. Mater. 260, 119896 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119896
  • 10. H. N. Ruslan, K. Muthusamy, N.F. Ariffin, M.M. Abdul Wahab, N. Mohamad , Effect of crushed cockle shell as partial fine aggregate replacement on workability and strength of lightweight concrete. Mater. Tod. Proc. 48, 1826-1830 (2022). https://doi.org/10.1016/j.matpr.2021.09.140.
  • 11. M. H. Ahsan, M. S. Siddique, S.H. Farooq, M. Usman, M.A. Ul Aleem, M. Hussain, A. Hanif, Mechanical behavior of high-strength concrete incorporating seashell powder at elevated temperatures. Build. Engin. 50, 104226 (2022). https://doi.org/10.1016/j.jobe.2022.104226
  • 12. B.A. Tayeh, M. W. Hasaniyah, A.M. Zeyad, M.O. Yusuf, Properties of concrete containing recycled seashells as cement partial replacement: A review. Clean. Prod. 237, 117723 (2019). https://doi.org/10.1016/j.jclepro.2019.117723
  • 13. P. Sangeetha, M. Shanmugapriya, K. Santhosh Saravanan, P. Prabhakaran, V. Shashank, Mechanical properties of concrete with seashell waste as partial replacement of cement and aggregate. Mater. Tod. Proc. 61, 320-326 (2022). https://doi.org/10.1016/j.matpr.2021.09.501
  • 14. U.G. Eziefula, J. C. Ezeh , B. I. Eziefula, Properties of seashell aggregate concrete: A review. Constr. Build. Mater. 192, 287-300 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.096
  • 15. H. M. Hamada, F. Abed, B. Tayeh, M. S. Al Jawahery, A. Majdi, S.T. Yousif, Effect of recycled seashells on concrete properties: A comprehensive review of the recent studies. Constr. Build. Mater. 376, 131036 (2023). https://doi.org/10.1016/j.conbuildmat.2023.131036
  • 16. C. L. Hwang, C.T. Chen, H. L. Huang, S. S. Peng, L. A. Tuan Bui, Y. Yi Yan, The Design and Case Study of Pervious Concrete Materials. Advan. Mater. Resea. 287-290, 781-784 (2011). https://doi.org/10.4028/www.scientific.net/AMR.287-290.781.
  • 17. T. Joshi, U. Dave, Construction of pervious concrete pavement stretch, Ahmedabad, India - Case study. Case. Studi. Constr. Materi. 16, e00622 (2022). https://doi.org/10.1016/j.cscm.2021.e00622
  • 18. K.S. Elango, R. Gopi, R. Saravanakumar, V. Rajeshkumar, D. Vivek, Properties of pervious concrete - A state of the art review. Mater. Tod. Proc. 45, 2422-2425 (2021). https://doi.org/10.1016/j.matpr.2020.10.839.
  • 19. J. Shan, Y. Zhang, S. Wu, Z. Lin, L. Li, Q. Wu, Pore characteristics of pervious concrete and their influence on permeability attributes. Constr. Build. Mater. 327,126874 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126874.
  • 20. X. Wang, Y. Wang, X. Ge, B. Tong, V. Schaefer, K. Wang, C. Li, The quantitative assessment of clogging and cleaning effects on the permeability of pervious concrete. Constr. Build. Mater. 335, 127455 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127455.
  • 21. Y. Zhang, Hui Li, A. Abdelhady, J. Yang, Comparative laboratory measurement of pervious concrete permeability using constant-head and falling-head permeameter methods. Constr. Build. Mater. 263, 120614 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120614
  • 22. A.A. Aliabdo, A.M. Abd Elmoaty, A.M. Fawzy, Experimental investigation on permeability indices and strength of modified pervious concrete with recycled concrete aggregate. Constr. Build. Mater. 193, 105-127 (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.182.
  • 23. E. Khankhaje, M.R. Salim, J. Mirza, M. W. Hussin, M. Rafieizonooz, Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Constr. Build. Mater. 126, 1054-1065 (2016). https://doi.org/10.1016/j.conbuildmat.2016.09.010.
  • 24. I. Horiguchi, Y. Mimura, P.J.M. Monteiro, Plant-growing performance of pervious concrete containing crushed oyster shell aggregate. Clean. Mater. 2, 100027 (2021). https://doi.org/10.1016/j.clema.2021.100027.
  • 25. D.H. Nguyen, M. Boutouil, N. Sebaibi, L. Leleyter, F. Baraud, Valorization of seashell by-products in pervious concrete pavers. Constr. Build. Mater. 49, 151-160 (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.017.
  • 26. E. Khankhaje, M. Rafieizonooz, M. R. Salim, J. Mirzac, Salmiati, M.W. Hussin, Comparing the effects of oil palm kernel shell and cockle shell on properties of pervious concrete pavement. International Journal of Pavement Research and Technology, 10, 383-392 (2017). http://dx.doi.org/10.1016/j.ijprt.2017.05.003
  • 27. D. Wang, Q. Zhao, C. Yang, Y. Chi, W. Qi, Z. Teng, Study on frost resistance and vegetation performance of seashell waste pervious concrete in cold area. Constr. Build. Mater. 265, 120758 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120758.
  • 28. W. Rezaiguia, Les monogènes parasites: inventaire et distribution chez 9 espèces de poissons téléostéens pêchés dans le golfe d’Annaba. Magisterium Memory, Badji Mokhtar - Annaba University, Algeria, 130 (2008). https://biblio.univ-annaba.dz/wp-content/uploads/2015/10/Rezaiguia-Wafa.pdf
  • 29. NF EN 12390-1, Essai pour béton durci, partie 1: Forme, dimensions et autres exigences relatives aux éprouvettes et aux moules, (2001).
  • 30. NF EN 12350-2, Essai pour béton frais. Partie 2: Essai d’affaissement, AFNOR, (999).
  • 31. NF EN 12350-6, Masse Volumique Du Béton Frais, AFNOR, (999).
  • 32. NF EN 12390-5, Essai pour béton durci, partie 5: résistance à la flexion sur éprouvette, AFNOR, (2001).
  • 33. NF EN 12390-3, Essai pour béton durci, partie 3: résistance à la compression sur éprouvette, AFNOR, (2000).
  • 34. ACI Commitee 211. Guide for Selecting Proportions for No-Slump Concrete. American Concrete Institute, Farmington Hills, MI, 1-26 (2002).
  • 35. ACI Commitee 522. Report on Pervious Concrete. American Concrete Institute, Farmington Hills, MI, 1-38 (2010).
  • 36. ASTM C29/C29M, Standard Test Method for Bulk Density (“Unit Weight”) and Voids in Aggregate, (2017).
  • 37. H. Cuadrado-Rica, N. Sebaibi, M. Boutouil, B. Boudart, Properties of ordinary concretes incorporating crushed queen scallop shells, Mater. Struct. 49, 1805-1816 (2016). https://doi.org/10.1617/s11527-015-0613-7.
  • 38. K. Obla, Pervious Concrete for Sustainable Development. Proceedings of the First International Conference on Recent Advancesin Concrete Technology, Washington DC, USA, (2007).
  • 39. M. Sonebia, M. Bassuonib, A. Yahia, Pervious Concrete: Mix Design, Properties and Applications, RILEM. Techn. Lett, 109 - 115 (2016). http://dx.doi.org/10.21809/rilemtechlett.2016.24.
  • 40. M. Olivia, A. Mifshella, L. Darmayanti, Mechanical Properties of Seashell Concrete. Proc. Engin. 125, 760-764 (2015), DOI: 10.1016/j.proeng.2015.11.127.
  • 41. H. Cuadrado Rica, Étude du comportement de bétons de coproduits coquilliers pour une utilisation en récifs artificiels. doctoral thesis, University of Caen Normandy, French, 211 (2017). https://theses.hal.science/tel-01578986/document.
  • 42. A. Yahia, D. Kabagire, New approach to proportion pervious concrete. Constr. Build. Mater, 62, 38-46 (2014). https://doi.org/10.1016/j.conbuildmat.2014.03.025.
  • 43. M. S. Sumanasooriya, N. Neithalath, Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Ceme.Conc. Comp, 33, 778-787 (2011). doi:10.1016/j.cemconcomp.2011.06.002.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7916b8e-32ed-49a4-921c-a3d46a4db699
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.