PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nano-structured (Mo,Ti)C-C-Ni magnetic powder

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The paper presents the results of phase composition and magnetic properties of Mo-Ni-Ti-C nanostructured powders. The aim of this research is understanding the correlation between key magnetic properties and the parameters that influence them in the nanostructured powders from Mo-Ni-Ti-C system. Design/methodology/approach: The powder samples were synthesised using modified sol-gel method. Obtained powder were subjected for composition and magnetic properties in a wide temperature range by means of Electron Paramagnetic Resonance (EPR) and magnetic susceptibility measurements. To study the phase composition X-ray diffraction were performed. The morphology of the powders were investigated by scanning electron microscopy (SEM). Findings: Different kinds of structural and magnetic phases have been found in the investigated compounds, e.g. (Mo, Ti)C, C, Ni. It was found that such different phases create different kinds of magnetic interactions, from paramagnetic, antiferromagnetic up to superparamagnetic. Significant magnetic anisotropy has been revealed for low temperatures, which lowers with temperature increase. Moreover, non-usual increasing of the magnetization as a function of temperature was observed. It suggests, that overall longrange AFM interaction may be responsible for the magnetic properties. Research limitations/implications: For the future work explanation which phases in Mo-Ni-Ti-C system are responsible for different kinds of magnetic interactions are planned. Practical implications: The composition of different kinds of phases may be controlled to tune magnetic properties of the nanostructured Mo-Ni-Ti-C systems. Originality/value: In this study, for the first time Mo-Ni-Ti-C nanostructured samples were prepared with different kinds of structural and magnetic phases, creating different kinds of magnetic interactions, from paramagnetic, antiferromagnetic up to superparamagnetic-like. The latter seems to be formed due to the presence of magnetic nanoparticles and longrange antiferromagnetic interactions dominating in the whole temperature range.
Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastów 48, 70-311 Szczecin, Poland
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastów 19, 70-310 Szczecin, Poland
autor
  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastów 48, 70-311 Szczecin, Poland
autor
  • Institute of Materials Science and Engineering, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastów 19, 70-310 Szczecin, Poland
  • Institute of Physics, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastów 48, 70-311 Szczecin, Poland
autor
  • Institute of Manufacturing Engineering, Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Al. Piastow 19, 70-310 Szczecin, Poland
  • Institute of Transport Engineering, Faculty of Transport Engineering and Economics, Maritime University of Szczecin, Al. Pobożnego 11, 70-507 Szczecin, Poland
Bibliografia
  • [1] R.W. Siegel, Nanostructure Science and Technology. A Worlwide Study; in: R.W. Siegel, E. Hu, M.C. Roco (Eds.), R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices, Report, WTEC, Loyoa College in Maryland, 1999.
  • [2] H. Gleiter, Nanostructured materials: State of the art and perspectives, Nanostructured Materials 6 (1995) 3-14.
  • [3] A.S. Edelstein, R.C. Cammarata (Eds.), Nanomaterials: Synthesis, properties and applications, IOP, Bristol, 1996.
  • [4] R.W. Siegel, Nanophase materials, in: G.L. Trigg (Ed.), Encyclopedia of applied physics, Vol. 11, VCH, Wienheim, 1994, 1-27.
  • [5] N.A. Frey, S. Peng, K. Cheng, S. Sun, Magnetic nanoparticles: Synthesis, functionalization and applications in bioimaging and magnetic energy storage, Chemical Society Reviews 38 (2009) 2532-2542.
  • [6] M.H. Pablico-Llansigan, S.F. Situ, A.C.S. Samia, Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy, Nanoscale 5 (2013) 4040-4055.
  • [7] R.D. Shull, R.D. McMichael, L.J. Schwartendruber, L.H. Bennett, Magnetocaloric effect of reffomagnetic particles, Proceedings of the 7th International Cryocoolers Conference, 1992.
  • [8] I.Koh, L. Josephson, Magnetic nanoparticle sensors, Sensors 9 (2009) 8130-8145.
  • [9] T.A.P. Rocha-Santos, Sensors and biosensors based on magnetic nanoparicles, Trends in Analytical Chemistry 62 (2014) 28-36.
  • [10] S. Bednarek, Ferromagnetic fluids – materials with unusual properties and their application, Foton 104 (2009) 22-29 (in Polish).
  • [11] A. Hervault, N.T.K. Thanh, Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer, Nanoscale 6 (2014) 11553-11573.
  • [12] N. Huilgol (Ed.), Hyperthermia, Proceedings of the INTECH 2013, Morn Hill, 2013.
  • [13] M.Y. Razzaq, M. Behl, A. Lendlein, Memory-effects of magnetic nanocomposites, Nanoscale 4 (2012) 6181-6195.
  • [14] D. Pinkowicz, H. Southerland, X.-Y. Wang, K.R. Dunbar, Record Antiferromagnetic Coupling for a Cyanide-Bridged Compound, Journal of the American Chemical Society 136 (2014) 9922-9924.
  • [15] R.V. Mambrini, T.L. Fonseca, A. Dias, L.C.A. Oliveira, M.H. Araujo, F.C.C. Moura, Magnetic composites based on metallic nickel and molybdenum carbide: A potential material for pollutants removal, Journal of Hazardous Materials 241-242 (2012) 73-78.
  • [16] Z.H. Wang, D. Li, D.Y. Geng, S. Ma, W. Liu, Z.D. Zhang, The characterizations of superconducting MoC/Mo2C nanocomposites embedded in a magnetic graphite matrix, Physica Status Solidi A 205/12 (2008) 2919-2933.
  • [17] C.I. Sathish, Y. Guo, X. Wang, Y. Tsujimoto, J. Li, S. Zhang, Y. Matsushita, Y. Shi, H. Tian, H. Yang, J. Li, K. Yamaura, Superconducting nd structural properties of d-MoC0.681 cubic molybdenum carbide chase, Journal of Solid State Chemistry 196 (2012) 579-585.
  • [18] Y. Yanaba, T. Takahashi, K. Hayashi A consideration on TiC-core/(Ti,Mo)C-rim structure of TiC-Mo2C-Ni cermet in relation to hypothesis “Exhaustion of diffusion-contributable atomic vacancies in core/rim structure”, Journal of the Japan Society of powder and Powder Metallurgy 51/5 (2004) 374-384.
  • [19] R. Ohser-Wiedemann, C. Weck, U. Martin, A. Müller, H.J. Seifert, Spark Plasma Sintering of TiC particle-reinforced molybdenum composites, International Journal of Refractory Metals and Hard Materials 32 (2012) 1-6.
  • [20] M.M. Kulak, B.B. Khina, Self-propagation high-temperature synthesis in the Ti-C-Ni-Mo system on application of powerful ultrasound, Journal of Engineering Physics and Thermophysics 87/2 (2014) 333-343.
  • [21] J. Qin. I. Asempah, S. Laurent, A. Fornara, R.N. Muller, M. Muhammed, Injectable superparamagnetic ferrogels for controlled release of hydrophobic drugs, Advanced Materials 21 (2009) 1354-1357.
  • [22] V.N. Eremenko, T.Y. Velikonova, Phase equilibria in the Mo-TiC-Ti of the ternary system Mo-Ti-C. Character of solidification of alloys and projection of the solidus surface, Powder Metallurgy and Metal Ceramics 8/11 (1969) 931-936.
  • [23] K. Takagi, K. Osada, W. Koike, T. Fujima, Effect of Mo2C content on the properties of TiC/TiB2 base cermets, Journal of Physics: Conferences Series 176 (2009) 012044.
  • [24] J. Zackrisson, A. Larsson, H.-O. Andren, Microstructure of the Ni binder phase in a TiC-Mo2C-Ni cermet, Micron 32 (2001) 707-712.
  • [25] Y.K. Kim, J.-H. Shim, Y.W. Cho, H.-S. Yang, J.-K. Park, Mechanochemical synthesis of nanocomposite powder for ultrafine (Ti, Mo)C-Ni cermet without core-rim structure, International Journal of Refractory Metal & Hard Materials 22 (2004) 193-196.
  • [26] J.I. Keene, Characterization of a Ti(Mo)C-Ni cermet for use in impact resistant sandwich panels, A Thesis Presented to the faculty of the School of Engineering and Applied Science University of Virginia, December 2013, http://www.virginia.edu/ms/research/wadley/Thesis/JKeeneMS.pdf; 15.06.2015,
  • [27] Y.F. Yang, S.B. Jin, Q.C. Jiang, Effect of reactant C/Ti ratio on the stoichiometry, morphology of TiCx and mechanical properties of TiCx-Ni compsite, Crystal Engineering Communications 15 (2013) 852-855.
  • [28] T. Viatte, T. Cutard, G. Feusier, W. Benoit, High temperature mechanical properties of Ti(C, N)-Mo2C-Ni cermets studied by internal friction measurements, Journal de Physique IV, Colloque C8, suppltment au Journal de Physique III 6 (1996) 743-746.
  • [29] M.A. Qian, L.C. Lim, On the disappearance of Mo2C during low-temperature sintering of Ti(C,N)-Mo2C-Ni cerments, Journal of Materials Science 34 (1999) 3677-3684.
  • [30] J.C. LaSalvia, D.K. Kim, R.A. Lipsett, M.A. Meyers, Combustion Synthesis in the Ti-C-Ni-Mo System: Part I, Micromechanisms, Metallurgical and Materials Transactions A 26 (1995) 3001-3009.
  • [31] M. Viljus, J. Pirso, K. Juhani, S. Letunovits, Structure Formation in Ti-C-Ni-Mo Composites during Reactive Sintering, Materials Science 18/1 (2012) 62-65.
  • [32] C. Wenlin, L. Ning, C. Sheng, Effect of titanium carbide addition on microstructure and mechanical properties of ultra-fine Ti(C, N)-Ni cermet, Journal of the Chinese Ceramic Society 35/9 (2007) 1210-1216.
  • [33] A. Biedunkiewicz, P. Figiel, M. Krwczyk, U. Gabriel-Półrolniczak, S.M. Kaczmarek, T. Bodziony, T. Skibiński, Material In form powder with magnetic properties and metod of manufacturing of the material In form powder, Polish Patent P 413627, 2015 (In Polish).
  • [34] P. Scherrer, Bestimmung der Grösse und der inneren Structur von Kolloidteilchen mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 26 (1918) 98-100 (in German).
  • [35] N. Guskos, J. Typek, M. Maryniak, U. Narkiewicz, W. Arabczyk, I. Kucharewicz, Temperature dependence of FMR spectrum of Fe3C magnetic agglomerates, Journal of Physics: Conferences Series 10 (2005) 151-154.
  • [36] J. Crangle, A. Fogarty, M.J. Taylor, Weak ferromagnetism in ‘non-magnetic’ austenitic stainless steel, Journal of Magnetism and Magnetic Materials 111 (1992) 255-259.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7888366-02a5-4c7f-8e4e-e2d5a9fa2471
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.