PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of porogenes in production of porouspolymers by supercritical foaming

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biocomposite foam scaffolds of poly(ε-caprolactone) (PCL) with different porogenes were producedwith batch foaming technique using supercritical carbon dioxide (scCO2)as a blowing agent. Inperformed experiments composites were prepared from graphene-oxide (nGO), nano-hydroxyapatite(nHA) and nano-cellulose (nC), with various concentrations. The objective of the study was to explorethe effects of porogen concentration and foaming process parameters on the morphology and me-chanical properties of three-dimensional porous structures that can be used as temporary scaffolds intissue engineering. The structures were manufactured using scCO2as a blowing agent, at two variousfoaming pressures (9 MPa and 18 MPa), at three different temperatures (323 K, 343 K and 373 K) fordifferent saturation times (0.5 h, 1 h and 4 h). In order to examine the utility of porogenes, a number oftests, such as static compression tests, thermal analysis and scanning electron microscopy, have beenperformed. Analysis of experimental results showed that the investigated materials demonstrated highmechanical strength and a wide range of pore sizes. The obtained results suggest that PCL porousstructures are useful as biodegradable and biocompatible scaffolds for tissue engineering.
Rocznik
Strony
115–--122
Opis fizyczny
Bibliogr. 9 poz. tab., rys.
Twórcy
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology,ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology,ul. Waryńskiego 1, 00-645 Warsaw, Poland
  • Faculty of Chemical and Process Engineering, Warsaw University of Technology,ul. Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Ahadian S., Ramalingam M., Khademhosseini A., 2013. The emerging applications of grapheneoxide and graphenein tissue engineering. In: Ramalingam M., Wang ., Chen G., MaP., Cui F.-Z. (Eds.),Biomimetics: Advancingnanobiomaterials and tissue engineering, 279–299. DOI: 10.1002/9781118810408.ch12.
  • 2. Chen C.X., Liu Q.Q., Xin. X., Guan Y.X., Yao S.J., 2016. Pore formation of poly(ε-caprolactone) scaffolds withmelting point reduction in supercritical CO2foaming.J. Supercrit. Fluids, 117, 279–288. DOI: 10.1016/j.supflu.2016.07.
  • 3. Diaz-Gomez L., Concheiro A., Alvarez-Lorenzo C., García-González C.A., 2016. Growth factors delivery fromhybrid PCL-starch scaffolds processed using supercriticalfluid technology.Carbohydr. Polym., 142, 282–292.DOI: 10.1016/j.carbpol.2016.01.051.
  • 4. Dumrah Dumanli A., 2017. Nanocellulose and its composites for biomedical applications.Curr. Med. Chem., 24,512–528. DOI: 10.2174/ 0929867323666161014124008.
  • 5. K. Sawicka, K. Kosowska, M. Henczka Chem. Process Eng., 2019, 40 (1), 115–122Fröhlich M., Grayson W.L., Wan L.Q., Marolt D., Drobnic M., Vunjak-NovakovicG., 2008. Tissue engineered bonegrafts: biological requirements, tissue culture and clinical relevance.Current Stem Cell Res. Ther., 3, 254–64.DOI: 10.2174/157488808786733962.
  • 6. Kramschuster A., Turng L.-S., 2013. Fabrication of tissue engineering scaffolds, In: Ebnesajjad S. (Ed.),Handbookof biopolymers and biodegradable plastics.Plastics Design Library. Elsevier, 17, 427–446. DOI: 10.1016/B978-1-4557-2834-3.00017-3.
  • 7. Loh Q.L., Choong C., 2013. Three-dimensional scaffolds for tissue engineering applications: role of porosity andpore size.Tissue Eng. Part B: Rev., 19, 485–502. DOI: 10.1089/ten.teb.2012.0437.
  • 8. Velasco M.A., Narváez-Tovar C.A., Garzón-Alvarado D.A., 2015. Design, materials, and mechanobiology ofbiodegradable scaffolds for bone tissue engineering.Biomed Res. Int., Article ID 729076. DOI: 10.1155/2015/729076.
  • 9. White L.J., Hutter V., Tai H., Howdle S.M., Shakesheff K.M., 2012. The effect of processing variables on morpho-logical and mechanical properties of supercritical CO2foamed scaffolds for tissue engineering.Acta Biomater.,8, 61–71. DOI: 10.1016/j.actbio.2011.07.032.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7863b06-162d-4007-9a08-dbcdd7a5cfd7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.