Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modelowanie histerezy w elektromechanicznym przetworniku z materiałem z magnetyczną pamięcią kształtu
Języki publikacji
Abstrakty
The article presents a new class of smart materials which are magnetic shape memory alloys. These alloys combines both good dynamics and large strains. These properties make it possible to use these materials in positioning transducers which are alternative for classical electromagnetic transducers such as proportional solenoids. Unfortunately as other smart materials, MSMA are distinguished by hysteresis phenomenon which loop in this case is very wide and asymmetric. Authors present result of strain measurement which was performed for decreasing amplitude sine input signal. Based on this result phenomenological generalized Prandtl-Ishlinskii model was matched and compared.
Artykuł zawiera opis nowej grupy materiałów inteligentnych, jaką są materiały z magnetyczną pamięcią kształtu. Materiały te łączą w sobie dobre właściwości dynamiczne oraz duży zakres możliwych odkształceń. Właściwości te powodują, iż istnieje realna szansa na praktyczną ich aplikację w konstrukcji przetworników pozycjonujących, które mogą konkurować z rozwiązaniami klasycznymi np. elektromagnesami proporcjonalnymi. Autorzy zaprezentowali wynik pomiaru wydłużenia dla gasnącej amplitudy sinusoidalnego sygnału sterującego. Na podstawie zarejestrowanych wyników dopasowano do nich uogólniony fenomenologiczny model histerezy Prandtla-Ishlińskiego oraz dokonano porównania.
Wydawca
Czasopismo
Rocznik
Tom
Strony
244--247
Opis fizyczny
Bibliogr. 20 poz., il., schem., tab.
Twórcy
autor
- Poznan University of Technology, Division of Mechatronics Devices, Piotrowo Street 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, Division of Mechatronics Devices, Piotrowo Street 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, Division of Mechatronics Devices, Piotrowo Street 3, 60-695 Poznan, Poland
Bibliografia
- [1] Lagoudas D. C., Shape memory alloys: modeling and engineering applications, Springer, Berlin (2008)
- [2] Jokinen T., Ullakko K., Suorsa I., Magnetic Shape Memory materials-new possibilities to create force and movement by magnetic fields, Proceedings of the Fifth Int. Conference on Electrical Machines and Systems ICEMS, (2001), 20-23
- [3] Meier H., Czechowicz A., Haberland C., Langbein S., Smart control systems for smart materials, Journal of materials engineering and performance, 20 (2011), No. 4-5, 559-563
- [4] Kuhnen K., Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach, European J. of Control, 9 (2003), No. 4, 407-418
- [5] Riccardi L., Naso D., Turchiano B., Janocha H., Robust adaptive control of a magnetic shape memory actuator for precise positioning, American Control Conference, San Francisco (USA), 2011, 5400-5405
- [6] Riccardi L., Naso D., Turchiano B., Janocha H., Adaptive approximation-based control of hysteretic unconventional actuators, 50th IEEE Conference on Decision and Control and European Control Conference CDC-ECC, (2011), 958-963
- [7] Riccardi L., Naso D., Turchiano B., Janocha H., Palagachev D. K., On PID control of dynamic systems with hysteresis using a Prandtl-Ishlinskii model, IEEE Conference on American Control Conference ACC, (2012), 1670-1675
- [8] Ullakko K., Huang J. K., Kantner C., O’Handley R. C., Kokorin V. V., Large magnetic‐field‐induced strains in Ni2MnGa single crystals, Applied Physics Letters, 69 (1996), No. 13, 1966-1968
- [9] Mohd Jani J., Leary M., Subic A., Gibson M. A., A review of shape memory alloy research, applications and opportunities, Materials & Design, 56 (2014), 1078-1113
- [10] Holz B., Riccardi L., Janocha H., Naso D., MSM actuators: design rules and control strategies, Advanced Engineering Materials, 14 (2012), No. 8, 668-681
- [11] Minorowicz B., Nowak A., Stefański F., Position regulation of magnetic shape memory actuator, J. of Achievements in Materials and Manufacturing Eng. 61 (2013), No. 2, 216-221
- [12] MINOROWICZ B., NOWAK A., Force generation survey in magnetic shape memory alloys, Archives of Mechanical Technology and Automation, 33 (2013), No. 1, 37-46
- [13] Al Janaideh M., Rakheja S., Su C.-Y., An analytical generalized Prandtl–Ishlinskii model inversion for hysteresis compensation in micropositioning control, IEEE/ASME Transactions on Mechatronics, 16 (2011), No. 4, 734-744
- [14] Riccardi L., Naso D., Janocha H., Turchiano B., A precise positioning actuator based on feedback-controlled magnetic shape memory alloys, Mechatronics, 22 (2012), No. 5, 568-576
- [15] Schlüter K., Riccardi L., Raatz A., An Open-Loop Control Approach for Magnetic Shape Memory Actuators Considering Temperature Variations, Advances in Science and Technology, 78 (2013), 119-124
- [16] Riccardi L., Naso D., Turchiano B., Janocha H., Adaptive control of positioning systems with hysteresis based on magnetic shape memory alloys, IEEE Transactions on Control Systems Technology, 21 (2013), No. 6, 2011-2023
- [17] Al Janaideh M., Su C.-Y., Rakheja S., Development of the ratedependent Prandtl–Ishlinskii model for smart actuators, Smart Materials and Structures, 17 (2008), No. 3, 035026
- [18] Al Janaideh M., Rakheja S., Su C.-Y., A generalized Prandtl–Ishlinskii model for characterizing the hysteresis and saturation nonlinearities of smart actuators, Smart Materials and Structures, 18 (2009), No. 4, 045001
- [19] Al Janaideh M., Rakheja S., Mao J., Su C.-Y., Inverse generalized asymmetric Prandtl-Ishlinskii model for compensation of hysteresis nonlinearities in smart actuators, International Conference on Networking, Sensing and Control ICNSC'09, (2009), 834-839
- [20] Flaga S., Oprzędkiewicz I., Sapiński B., Characteristics of an experimental MSMA-based actuator, Solid State Phenomena, 198 (2013), 283-288
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e785839d-f699-4511-8b22-ed00e17b3750