PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the transient thermal field in two conductors carrying sinusoidal current using Green’s function

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper analyzes the transient thermal field in a system of two parallel conductors. The skin and proximity effects are taken into account. An analytical method based on Green’s function is developed to determine the field distributions. The Green’s function was determined analytically, and due to the complex forms of the expressions describing the current densities, the integrals resulting from the Green’s identity were calculated numerically. In addition, important parameters determining the dynamics of the conductors were also calculated: heating curves and thermal time constants. The influence of selected material parameters on the corresponding thermal field distributions is examined. The calculation results are positively verified using the finite element method.
Rocznik
Strony
795--808
Opis fizyczny
Bibliogr. 33 poz., rys., wykr., wz.
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Department of Electrotechnics, Power Electronics and Electrical Power Engineering, 45D Wiejska Str., 15-351 Białystok, Poland
Bibliografia
  • [1] Anders G.J., Rating of electric power cables in unfavorable thermal environment, Wiley-IEEE Press (2005).
  • [2] Papailiou K.O., Overhead lines, Springer (2021).
  • [3] Agrawal K.C., Electrical power engineering: reference & applications handbook, Taylor & Francis (2007).
  • [4] Lejdy B., Sulkowski M., Electrical installations in building structures, Wydawnictwo Naukowe PWN (in Polish) (2019).
  • [5] Nahman J., Tanaskovic M., Determination of the current carrying capacity of cables using the finite element method, Electric Power Systems Research, vol. 61, no. 2, pp. 109–117 (2002), DOI: 10.1016/S0378-7796(02)00003-2.
  • [6] Ghoneim S. S. M., Ahmed M., Sabiha N. A., Transient thermal performance of power cable ascertained using finite element analysis, Processes, vol. 9, no. 3, 438 (2021), DOI: 10.3390/pr9030438.
  • [7] De Menezes E. A. W., Lisbôa T. V., Marczak R. J., A novel finite element for nonlinear static and dynamic analyses of helical cables, Engineering Structures, vol. 293, 116622 (2023), DOI: 10.1016/ j.engstruct.2023.116622.
  • [8] Hanna M. A., Chikhani A.Y., Salama M. M. A., Thermal analysis of power cable systems in a trench in multi-layered soil, IEEE Transactions on Power Delivery, vol. 13, no. 2, pp. 304–309 (1998), DOI: 10.1109/61.660894.
  • [9] Garrido C., Otero A. F., Cidras J., Theoretical model to calculate steady-state and transient ampacity and temperature in buried cables, IEEE Transactions on Power Delivery, vol. 18, no. 3, pp. 667–678 (2003), DOI: 10.1109/TPWRD.2002.801429.
  • [10] Chatzipanagiotou P., Chatziathanasiou V., Dynamic thermal analysis of a power line by simplified RC model networks: theoretical and experimental analysis, International Journal of Electrical Power and Energy Systems, vol. 106, pp. 288–293 (2019), DOI: 10.1016/j.ijepes.2018.10.009.
  • [11] Mahairi M. G., Mohamed B., Arboleya P., Thermal model of DC conductors for railway traction networks: A hosting capacity assessment, Electric Power Systems Research, vol. 230, 110262 (2024), DOI: 10.1016/j.epsr.2024.110262.
  • [12] Zhang Z., Deng X., Liang L.,Wang X., Chen Y., Ruan J., Temperature field calculation and thermal circuit equivalent analysis of 110 kV core cable Joint, Processes, vol. 12, 463 (2024), DOI: 10.3390/pr12030463.
  • [13] Enescu D., Colella P., Russo A., Thermal Assessment of Power Cables and Impacts on Cable Current Rating: An Overview, Energies, vol. 13, 5319 (2020), DOI: 10.3390/en13205319.
  • [14] Morgan V. T., Findlay R. D., Derrah S., New formula to calculate the skin effect in isolated tubular conductors at low frequencies, IEE Proceedings – Science, Measurement and Technology, vol. 147, no. 4, pp. 169–171 (2000), DOI: 10.1049/ip-smt:20000420.
  • [15] Faria J. A. B., Raven M. S., On the success of electromagnetic analytical approaches to full time-domain formulation of skin effect phenomena, Progress In Electromagnetics Research M, vol. 31, pp. 29–43 (2013), DOI: 10.2528/PIERM13042405.
  • [16] Barletta A., Zanchini E., Time averaged temperature distribution in a cylindrical resistor with alternating current, Warme – Und Stoffubertragung, vol. 29, pp. 285–290 (1994), DOI: 10.1007/BF01578412.
  • [17] Gołębiowski J., Zaręba M., Analytical modelling of the transient thermal field of a tubular bus in nominal rating, Compel – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 38, no. 2, pp. 642–656 (2019), D.
  • [18] Zaręba M., Gołębiowski J., The thermal characteristics of ACCR lines as a function of wind speed – an analytical approach, Bulletin of the Polish Academy of Sciences Technical Sciences, vol. 70, no. 2, e141006 (2022), DOI: 10.24425/bpasts.2022.141006.
  • [19] Gong Y., Guo X., Transient thermal analysis of power cable-considering skin effect, Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), Hong-Kong, pp. 767–770 (2015).
  • [20] Kazimierczuk M., High-frequency magnetic components, John Wiley & Sons (2013).
  • [21] Wojda R.P., Thermal analytical winding size optimization for different conductor shapes, Archives of Electrical Engineering, vol. 64, no. 2, pp. 197–214 (2015), DOI: 10.1515/aee-2015-0017.
  • [22] Arslan S., Tarimer İ., Güven M.E., Investigation of current density, magnetic flux density, and ohmic losses for single-veined, Litz and foil structured conductors at different frequencies, Pamukkale University Journal of Engineering Sciences, vol. 19, no. 3, pp. 195–200 (2013), DOI: 10.5505/pajes.2013.36844.
  • [23] Latif M. J., Danesh-Yazdi A.H., Heat conduction, Springer (2024).
  • [24] Wang L., Zhou X., Wei X., Heat conduction: mathematical models and analytical solutions, Springer Verlag (2008).
  • [25] Jabłoński P., Szczegielniak T., Kusiak D., Piątek Z., Analytical-numerical solution for the skin and proximity effect in two parallel round conductors, Energies, vol. 12, no. 18, 3584 (2019), DOI: 10.3390/en12183584.
  • [26] Arfken G.B., Weber H. J., Mathematical methods for physicists, sixth edition, Elsevier Academic Press (2005).
  • [27] Janicki M., De Mey G., Napieralski A., Application of Green’s functions for analysis of transient thermal states in electronic circuits, Microelectronics Journal, vol. 33, pp. 733–738 (2002), DOI: 10.1016/S0026-2692(02)00057-5.
  • [28] Hahn D.W., Ozisik M.N., Heat conduction, John Wiley&Sons (2012).
  • [29] Sikora R., Electromagnetic field theory, Wydawnictwo Naukowo-Techniczne (in Polish) (1998).
  • [30] Brykalski A., Über die eindringzeit des elektromagnetischen feldes in leiter, Archiv für Elektrotechnik, vol. 68, pp. 299–304 (1985), DOI: 10.1007/BF01845943.
  • [31] Wolfram Research, Mathematica, Version 11.1. Wolfram Research Inc. (2017).
  • [32] Canuto C., Quarteroni A., Zampieri T., Finite element methods for differential equation, Springer (2022).
  • [33] COMSOL Multiphysics, Reference Manual, Version 5.0, COMSOL AB (2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e77569a0-c8fc-45da-965e-b8bab7a4813e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.