PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Content of Heavy Metals in Various Biochar and Assessment Environmental Risk

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biochar is a product of biomass pyrolysis and has a number of environmentally beneficial uses, but it can also pose risks if not managed properly. These risks are mainly due to the chemical structure of biochar, the content of heavy metals. The aim of this study was to evaluate the mobility and environmental risk of heavy metals in biochar produced from plant biomass (BB), municipal solid waste (MSW), compost (C) and coal refuse (CR). Pollution indices were calculated: geo-accumulation index (GAI), ecological risk (Eri), the underlying ecological risk caused by the total pollution (PERI). The total heavy metal concentration is variable and depends on the type of biochar. The results indicate that there is a high risk of cadmium pollution in the environment. The underlying ecological risk caused by the total pollution values indicated that biochar from coal waste was the highest. The results obtained show the importance of mobility analysis in assessing the potential for natural use of biochar.
Słowa kluczowe
Rocznik
Strony
287--295
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Adriano D.C. 2001. Bioavailability of trace metals. In: Trace Elements in Terrestrial Environments. Springer, New York, 61–89.
  • 2. Antón-Herrero R., García-Delgado C., Alonso-Izquierdo M., García-Rodríguez G., Cuevas J., Eymar E. 2018. Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent. Applied Clay Science, 160(0169–1317), 162–172
  • 3. Azadi N., Raiesi F. 2021. Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar, 3, 485–498
  • 4. Cara I.G., Topa D., Puiu I., Jităreanu G. 2022. Biochar a promising strategy for pesticide-contaminated soils. Agriculture, 12(100, 1579).
  • 5. Council Decision of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC.
  • 6. Duwiejuah A.B., Abubakari A.H., Quainoo A.K., Amadu Y. 2020. Review of biochar properties and remediation of metal pollution of water and soil. Journal of Health & Pollution, 19, 10(27), 200902.
  • 7. Freddo A., Cai C., Reid B.J. 2012. Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environmantal Pollution, 17, 18–24.
  • 8. Gabhane J.W., Bhange V.P., Patil P.D., Bankar S.T., Kumar S. 2020. Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2(1307)
  • 9. Hakanson L. 1980. Water Res, 1980(14), 975–1001. DOI: 10.1016/0043-1354(80)90143-8
  • 10. Huang H., Yuan X., Zeng G., Zhu H., Li H., Liu Z., Jiang H., Leng L., Bi W. 2011. Quantitative evaluation of heavy metals’ pollution hazards in liquefaction residues of sewage sludge. Bioresource Technology, 102(22), 10346–10351.
  • 11. IBI Biochar Standards – Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, v.2.1. Available online: http://www.biochar-international.org/sites/default/files/IBI_Biochar_Standards_V2.1_Final.pdf (accessed on 1 February 2023).
  • 12. Kabata-Pendias A., Pendias H. 1993. Biochemistry of trace elements. PWN, Warsaw, Polish.
  • 13. Khorram M.S., Zhang Q., Lin D., Zheng Y., Fang H., Yu Y. 2016. A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of Environmental Sciences, 44, 269–279.
  • 14. Kujawska J., Bilicz E., Mendyk E. 2022. Analysis of the energy parameters of selected biomass and biochar types and the environmental impact of their ashes. Civil and Environmental Engineering Reports, 32(4), 147-166.
  • 15. Leng L.J., Huang H.J., Li H., Li J., Zhou W.G. 2019. Biochar stability assessment methods: a review. Science Total Environment, 647, 210–22.
  • 16. Liu T., Liu B., Zhang W. 2014. Nutrients and heavy metals in biochar produced by sewage sludge pyrolysis: Its application in soil amendment. Polish Journal of Environemntal Study, 23(1), 271–275.
  • 17. Liu X., Wang Y., Gui C., Li P., Zhang J., Zhong H., Wei Y. 2016. Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis. RSC Advances, 104, 101960–101967.
  • 18. Malińska K. 2012. Biochar - a response to current environmental issues. Engineering and Protection of Environment, 15, 380–385.
  • 19. Malińska K. 2015. Legal and quality aspects of requirements defined for biochar. Engineering and Protection of Environment, 18, 359–371.
  • 20. Mancinelli E., Baltrėnaitė E., Baltrėnas P., Paliulis D., Passerini G., Almås Å.R. 2015. Trace metal concentration and speciation in storm water runoff on impervious surfaces. Journal of Environmental Engineering and LandscapeManagement, 23(1), 15–27
  • 21. Mellbo P., Sarenbo. S., Stålnacke. O., Claesson. T. 2008. Leaching of wood ash products aimed for spreading in forest floors – influence of method and L/S ratio. Waste Management, 28(11), 2235–2244
  • 22. Mende A., Gómez A., Paz-Ferreiro J., Gascó G. 2012. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere, 89, 1354–1359.
  • 23. Mizerna K., Król A. 2018. Sequential extraction of heavy metals in mineral-organic composite. Ecological Engineering, 3, 23–29.
  • 24. Rahi A.A., Younis U., Ahmed N., Ali M.A., Fahad S., Sultan H., Zarei T., Danish S., Taban S., El Enshasy H.A., Tamunaidu P., Alotaibi J.M, Alharbi S.A., Datta R. 2022. Toxicity of Cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility, Saudi Journal of Biological Sciences, 29(2), 743–750
  • 25. Rakshit A., Parihar M., Sarkar B., Singh H.B., Fraceto L.F. 2021. Bioremediation Science From Theory to Practice. Routledge, London: New York.
  • 26. Regulation of the Minister for Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilisers and fertilisation (Dz.U. 2008 nr 119 poz. 765).
  • 27. Regulation of the Minister of the Environment of 6 February 2015 on the use of municipal sewage sludge (Dz.U. 2015 poz. 257).
  • 28. Saletnik B., Zaguła G., Bajcar M., Tarapatskyy M., Bobula G., Puchalski C. 2019. Biochar as a multifunctional component of the environment – A review. Applied Science, 9(6), 1139.
  • 29. Stiernström, S., Hemström, K., Wik, O., Carlsson, G., Bengtsson, B-E., Breitholtz, M., 2011. An ecotoxicological approach for hazard identification of energy ash. Waste Management, 31(2), 342–352.
  • 30. Sun X., Han X.G., Ping F., Zhang L., Zhang K.S., Chen M., Wu W.X. 2018. Efect of rice straw biochar on nitrous oxide emissions from paddy soils under elevated CO2 and temperature. Science Total Environment, 628, 629–1009.
  • 31. Tomczyk A., Sokołowska Z., Boguta P. 2020. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(1), 191–215.
  • 32. Vassilev S.V., Vassileva C.G., Baxter D. 2014. Trace element concentrations and associations in some biomass ashes. Fuel, 129, 292–313.
  • 33. Wang A., Zou D., Zeng X., Chen B., Zheng X., Li L., Zhang L., Xiao Z., Wang H. 2021. Speciation and environmental risk of heavy metals in biochars produced by pyrolysis of chicken manure and water-washed swine manure. Scientific Report, 11, 11994.
  • 34. Wang A., Zou D., Zhang L., Zeng X., Wang H., Li L., Liu B., Ren B., Xiao Z. 2019. Environemnatla risk assessment in livestock manure derived biochars, RSC Advances, 9, 40536.
  • 35. Xu X., Hu X., Ding Z., Chen Y. 2017. Effects of copyrolysis of sludge with calcium carbonate and calcium hydrogen phosphate on chemical stability of carbon and release of toxic elements in the resultant biochars. Chemosphere, 189, 76–85.
  • 36. Yargicoglu E., Sadasivam B., Reddy K. 2015. Physical and chemical characterization of waste wood derived biochars. Waste Management, 36, 256–268.
  • 37. Zhang Y., Chen Z., Xu W., Liao Q., Zhang H., Hao S., Chen S., P yrolysis of various phytoremediation residues for biochars: Chemical forms and environmental risk of Cd in biochar. Bioresources Technology, 299, 122581.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7755fe9-21b3-4028-b196-1b49c8c9b67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.