PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the Correlation between Random Variables and their Principal Components

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
EN
The article attempts to find an algebraic formula describing the correlation coefficients between random variables and the principal components representing them. As a result of the analysis, starting from selected statistics relating to individual random variables, the equivalents of these statistics relating to a set of random variables were presented in the language of linear algebra, using the concepts of vector and matrix. This made it possible, in subsequent steps, to derive the expected formula. The formula found is identical to the formula used in Factor Analysis to calculate factor loadings. The discussion showed that it is possible to apply this formula to optimize the number of principal components in Principal Component Analysis, as well as to optimize the number of factors in Factor Analysis.
Rocznik
Tom
Strony
41--55
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
  • Warsaw School of Computer Science
Bibliografia
  • [1] Z. Gniazdowski, “New Interpretation of Principal Components Analysis,” Zeszyty Naukowe WWSI, vol. 11, no. 16, pp. 43-65, 2017. [Online]. http://doi.org/10.26348/znwwsi.16.43
  • [2] ——, “Principal Component Analysis versus Factor Analysis,” Zeszyty Naukowe WWSI, vol. 15, no. 24, pp. 35-88, 2021. [Online]. http://doi.org/10.26348/znwwsi.24.35
  • [3] P. Francuz and R. Mackiewicz, Liczby nie wiedz ˛a, sk ˛ad pochodz ˛a. Przewodnik po metodologii i statystyce nie tylko dla psychologów. Lublin: Wydawnictwo KUL, 2007.
  • 4] Z. Gniazdowski, “On the Analysis of Correlation Between Nominal Data and Numerical Data,” Zeszyty Naukowe WWSI, vol. 16, no. 27, pp. 57-82, 2022. [Online]. http://doi.org/10.26348/znwwsi.27.57
  • [5] ——, “Geometric interpretation of a correlation,” Zeszyty Naukowe WWSI, vol. 7, no. 9, pp. 27–35, 2013. [Online]. http://doi.org/10.26348/znwwsi.9.27
  • [6] S. Banerjee and A. Roy, Linear Algebra and Matrix Analysis for Statistics. CRC Press, 2014. [Online]. https://students.aiu.edu/submissions/profiles/resources/onlineBook/C9M2d6_Linear_Algebra_and_Matrix_Analysis_for_Statistics.pdf
  • [7] C. R. Johnson and R. A. Horn, Matrix analysis. Cambridge university press Cambridge, 2013. [Online]. http://www.anandinstitute.org/pdf/Roger_A.Horn._Matrix_Analysis_2nd_edition(BookSee.org).pdf
  • [8] E. Million, “The Hadamard product,” Course Notes, vol. 3, no. 6, pp. 1-7, 2007. [Online]. http://buzzard.pugetsound.edu/courses/2007spring/projects/million-paper.pdf
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e77207db-fe38-48d6-ba79-fc7402ac8b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.