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Abstract: Using the Caputo-Fabrizio definition of fractional or-
der derivative, the positivity and asymptotic stability of the frac-
tional continuous-time linear systems are investigated. The solution
to the matrix fractional differential state equations is derived. Nec-
essary and sufficient conditions for the positivity and asymptotic
stability of the fractional linear systems are established. Tests for
checking of the asymptotic stability of the systems are provided.
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1. Introduction

A dynamical system is called positive if its trajectory, starting from any non-
negative initial condition state, remains forever in the positive orthant for all
nonnegative inputs. An overview of the state of the art in positive system the-
ory is given in the monographs by Farina and Rinaldi (2000), Kaczorek (2002),
as well as in the papers by Kaczorek (2014a, 2014b, 1998, 2011b, 2015, 1997).
The models that display positive behavior can be found in engineering, eco-
nomics, social sciences, biology and medicine, etc. The positive standard and
descriptor systems, along with their stability, have been analyzed by Kaczorek
(2002, 2014b, 1998, 2011b, 2015, 1997). The positive linear systems with differ-
ent fractional orders have been addressed in Kaczorek (2011b, 2012), and the
descriptor discrete-time linear systems in Kaczorek (1998). The descriptor pos-
itive discrete-time and continuous-time nonlinear systems have been analyzed
in Kaczorek (2014a), and the positivity and linearization of nonlinear discrete-
time systems by state-feedbacks in Kaczorek (2014b). New stability tests of
positive standard and fractional linear systems have been investigated in Ka-
czorek (2011a). The stability and robust stabilization of discrete-time switched
systems have been analyzed in Zhang (2014a,b). Recently, a new definition of
the fractional derivative without singular kernel has been proposed in Losada
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(2015). Using this new definition the positivity and asymptotic stability of the
fractional continuous-time linear systems will be investigated in this paper.

The paper is organized as follows. In Section 2 the solution to the matrix
fractional differential equations is derived. The necessary and sufficient con-
ditions for the positivity are established in Section 3 and for the asymptotic
stability – in Section 4, where also tests for checking the stability are provided.
Concluding remarks are formulated in Section 5.

The following notation will be used in this paper. The set of real n × m

matrices will be denoted by ℜn×m and the set of n × m real matrices with
nonnegative entries will be denoted by ℜn×m

+ (ℜn
+ = ℜn×1

+ ). The set of n× n

Metzler matrices will be denoted by Mn and the n × n identity matrix will be
denoted by In.

2. Solution of fractional differential equations

The Caputo-Fabrizio definition of fractional derivative of order α of the function
f(t) for 0 < α < 1 has the following form (see Losada, 2015):

CFDαf(t) = 1
1−α

t
∫

0

exp
(

− α
1−α

(t− τ)
)

ḟ(τ)dτ,

ḟ(τ) = df(τ)
dτ

, t > 0.

(1)

Consider the matrix fractional differential state equations

CFDαx(t) =
dαx(t)

dtα
= Ax(t) +Bu(t), (2)

y(t) = Cx(t) +Du(t), (3)

where x(t) ∈ ℜn, u(t) ∈ ℜm, y(t) ∈ ℜp are the state, input and output vectors,
respectively, and A ∈ ℜn×n, B ∈ ℜn×m, C ∈ ℜp×n, D ∈ ℜp×m.

Theorem 1 The solution x(t) of the equation (2) for a given initial condition
x(0) = x0 and input u(t) has the form

x(t) = eÂt(x̂0 + B̂u0) +

t
∫

0

eÂ(t−τ)B̂[βu(τ) + u̇(τ)]dτ, β =
α

1− α
, (4)

where

Â = α[In − (1− α)A]−1A, B̂ = [In − (1− α)A]−1(1 − α)B,

x̂0 = [In − (1− α)A]−1x0, eÂt = L−1{Ins− Â]−1},

u̇(τ) = du(τ)
dτ

, u(0) = u0.

(5)

Proof: By applying Laplace transform (L) to (2) and using the convolution
theorem we obtain
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L

[

dαx(t)

dtα

]

=
1

1− α
L





t
∫

0

exp

(

−
α

1− α
(t− τ)

)

ḟ(τ)dτ



 = AL[x(t)]+BL[u(t)]

(6)

and

1

1− α

{

1

s+ β
[sX(s)− x0]

}

= AX(s) +BU(s), (7)

where

X(s) = L[x(t)] =
∞
∫

0

x(t)e−stdt, U(s) = L[u(t)], L[e−βt] = 1
s+β

,

L

[

t
∫

0

exp
(

− α
1−α

(t− τ)
)

ẋ(τ)dτ

]

= 1
s+β

[sX(s)− x0],

L[ẋ(t)] = sX(s)− x0.

(8)

From (7) we have

[s(In − Ā)− βĀ]X(s) = x0 + (s+ β)B̄U(s), (9)

where

Ā = (1− α)A, B̄ = (1− α)B. (10)

Note that for the asymptotically stable Metzler matrix A the matrix [In − Ā] is
invertible. After premultiplication of (9) by [In − Ā]−1 we obtain

[Ins− Â]X(s) = [In − Ā]−1x0 + (s+ β)[In − Ā]−1B̄U(s)

= [In − Ā]−1x0 + βB̂U(s) + B̂[sU(s)− u0] + B̂u0,
(11)

where

Â = β[In − Ā]−1Ā = α[In − Ā]−1A, B̂ = [In − Ā]−1B̄, u0 = u(0) (12)

and

X(s) = [Ins− Â]−1[In − Ā]−1x0 + [Ins− Â]−1B̂u0

+β[Ins− Â]−1B̂U(s) + [Ins− Â]−1B̂[sU(s)− u0].
(13)

Taking into account the fact that

L−1{[Ins− Â]−1} = eÂt (14)
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and using the inverse Laplace transform and the convolution theorem we obtain
(4). ✷

By substituting (4) into (3) we obtain

y(t) = CeÂt(x̂0 + B̂u0) +

t
∫

0

CeÂ(t−τ)B̂[βu(τ) + u̇(τ)]dτ +Du(t). (15)

Using (15), we may find the output y(t) for given initial conditions x0 and input
u(t).

Lemma 1 If λk, k = 1, ..., n are the eigenvalues of the matrix A, then the eigen-
values of the matrix Â = α[In − (1− α)A]−1A are given by

λ̂k = α[1− (1− α)λk]
−1λk. (16)

Proof: It is well-known (see Gantmacher, 1959) that if f(λk) is well-defined on
the spectrum λk, k = 1, ..., n of the matrix A, then the eigenvalues of the matrix
f(A) are given by f(λk), k = 1, ..., n. In this case f(A) = α[In − (1− α)A]−1A.

✷

3. Positivity of the fractional linear systems

In this section the necessary and sufficient conditions for the positivity of the
fractional linear systems described by the equations (2) will be established. It
will be shown that the positivity of the systems depends on the first order
derivative of the input u(t).

Definition 1 The fractional system (2) is called (internally) positive if the
state vector x(t) ∈ ℜn

+ and the output vector y(t) ∈ ℜp
+, t > 0, for all initial

conditions and all inputs u(t) ∈ ℜm
+ , u̇(t) ∈ ℜm

+ , t > 0.

Definition 2 A real matrix A = [aij ] ∈ ℜn×n is called Metzler matrix if its
off-diagonal entries are nonnegative, i.e. aij > 0 for i 6= j; i, j = 1, ..., n.

Lemma 2 Let Â ∈ Mn and 0 < α < 1. Then

eÂt ∈ ℜn×n
+ for t > 0. (17)

Proof: The proof is similar to the one given in Kaczorek (2002).

Theorem 2 The fractional system (2) is positive if and only if

Â ∈ Mn, B̂ ∈ ℜn×m
+ , C ∈ ℜp×n

+ , D ∈ ℜp×m
+ . (18)

Proof:

Sufficiency. If Â ∈ Mn and B̂ ∈ ℜn×m
+ then from (4) we have x(t) ∈ ℜn

+, t > 0,

since, by Lemma 2, eÂt ∈ ℜn×n
+ and x0 ∈ ℜn

+, u(t) ∈ ℜm
+ , u̇(t) ∈ ℜm

+ , t > 0.
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Necessity. Let u(t) = 0, t > 0 and x0 = ei (i-th column of the identity matrix

In). The trajectory does not leave the orthant ℜn
+ only if Dαx(0) = Âei > 0,

what implies âij > 0 for i 6= j; i, j = 1, ..., n and Â ∈ Mn. If x0 = 0, then
Dαx(0) = Bu(0) > 0 and this implies B ∈ ℜn×m

+ , since u(0) ∈ ℜm
+ is arbitrary.

From (3) for u(t) = 0, t > 0 we have y(0) = Cx(0) and C ∈ ℜp×n
+ , since

x(0) = x0 ∈ ℜn
+ is arbitrary. Assuming x0 = 0 from (3) we have y(0) = Du(0)

and D ∈ ℜp×m
+ since u(0) ∈ ℜm

+ is arbitrary. ✷

Lemma 3 The matrix Ā = (1 − α)A ∈ ℜn×n for 0 < α < 1 is asymptotically
stable if and only if the matrix A is asymptotically stable.

Proof: The eigenvalues λ̄k, k = 1, ..., n of the matrix Ā are related with the
eigenvalues λk, k = 1, ..., n of the matrix A by

λ̄k = (1− α)λk, k = 1, ..., n (19)

since the characteristic polynomials of the matrices are related by the equality

det[Inλ̄k − Ā] = det[Inλ̄k − (1− α)A] =

= (1− α)n det
[

In
λ̄k

1−α
−A

]

= (1 − α)n det[Inλk −A].
(20)

Therefore, from (19) it follows that Reλ̄k < 0, k = 1, ..., n if and only if Reλk <

0, k = 1, ..., n. ✷

Lemma 4 The matrix

Â = α[In − (1− α)A]−1A ∈ Mn (21)

is asymptotically stable if and only if the eigenvalues λk = −αk+jβk, k = 1, ..., n
of the matrix A satisfy the condition [1 + (1− α)αk]αk + (1− α)β2

k = n(k) > 0.

Proof: From (16) for λ̂k = −α̂k + jβ̂k and λk = −αk + jβk, k = 1, ..., n we
have

λ̂k = −α̂k + jβ̂k = α[1− (1 − α)λk]
−1λk =

= α[1− (1− α)(−αk + jβk)]
−1(−αk + jβk)

= α
1+(1−α)αk+j(1−α)βk

[1+(1−α)αk]2+[(1−α)βk]2
(−αk + jβk)

= α
(

−[1+(1−α)αk]αk−(1−α)β2
k

[1+(1−α)αk]2+[(1−α)βk]2

+ j
[1+(1−α)αk]βk−(1−α)αkβk

[1+(1−α)αk]2+[(1−α)βk]2

)

(22)

and

α̂k = α

(

[1 + (1− α)αk]αk + (1− α)β2
k

[1 + (1− α)αk]2 + [(1 − α)βk]2

)

= α
n(k)

d(k)
, k = 1, ..., n. (23)
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From (23) it follows that α̂k > 0, k = 1, ..., n if and only if n(k) > 0, k =
1, ..., n. ✷

For a particular case, from Lemma 4, we have the following corollary.

Corollary 1 The matrix (21) is asymptotically stable if the matrix A is asymp-
totically stable, since it is possible that α̂k > 0 if αk < 0.

Lemma 5 The matrices

Â = α[In − (1− α)A]−1A ∈ Mn,

B̂ = [In − (1− α)A]−1(1− α)B ∈ ℜn×m
+

(24)

if A ∈ Mn is asymptotically stable and B ∈ ℜn×m
+ .

Proof: The matrix [In−(1−α)A]−1 ∈ ℜn×n
+ if the matrix A ∈ Mn is asymptot-

ically stable (see Kaczorek, 2002). Therefore, by Lemma 3 and (1−α)B ∈ ℜn×m
+

for 0 < α < 1 (24) holds if A ∈ Mn is asymptotically stable. ✷

From Lemma 4 and Theorem 2 we have the following.

Theorem 3 The fractional system (2) is positive if A ∈ Mn is asymptotically
stable and B ∈ ℜn×m

+ , C ∈ ℜp×n
+ , D ∈ ℜp×m

+ .

Example 1 Consider the fractional system described by the equation (2) for
α = 0.5 and

A =

[

−2 1
1 −3

]

, B =

[

1
1

]

, x0 =

[

1
1

]

, u(t) = 1(t) =

{

0 for t < 0,
1 for t > 0.

(25)

In this case the matrix

Â = α[I2 − (1− α)A]−1A = 0.5

[

2 −0.5
−0.5 2.5

]

−1 [
−2 1
1 −3

]

= 1
4.75

[

2.5 0.5
0.5 2

] [

−1 0.5
0.5 −1.5

]

= 1
4.75

[

−2.25 0.5
0.5 −2.75

]

(26)

is also an asymptotically stable Metzler matrix, since its characteristic polyno-
mial

det[I2s− Â] =

∣

∣

∣

∣

s+ 2.25
4.75 − 0.5

4.75
− 0.5

4.75 s+ 2.75
4.75

∣

∣

∣

∣

= s2 +
5

4.75
s+

1.25

4.75
(27)

has positive coefficients and its roots are s1 = −0.644, s2 = −0.4086.

Note that the matrix

B̂ = [In−(1−α)A]−1(1−α) =

[

2 −0.5
−0.5 2.5

]

−1 [
0.5
0.5

]

=
1

4.75

[

1.5
1.25

]

(28)
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has positive entries.
Using the Sylvester theorem we may find the matrix

eÂt = Z1e
s1t + Z2e

s2t, Z1 =
Â− I2s2

s1 − s2
, Z2 =

Â− I2s1

s2 − s1
. (29)

From (29) and (26) we obtain

eÂt =

[

0.2765 −0.4472
−0.4472 0.7237

]

e−0.644t +

[

0.7235 0.4472
0.4472 0.2763

]

e−0.4086t (30)

Using (4) with (25)-(30) we can find the desired solution

x(t) =

[

0.0737(e−0.4086t + e−0.644t)
0.0947(e−0.4086t + e−0.644t)

+0.1177(e−0.4086t − e−0.644t) + 0.8
+0.0235(e−0.4086t − e−0.644t) + 0.6

]

.

(31)

The solutions of the state equation (2) with (25) and α = {0.4, 0.6, 0.8, 1}
are shown in Figs. 1 and 2. Note that for α = 1 we use the standard solution

x̄(t) = eAtx0 +

t
∫

0

eA(t−τ)Bu(τ)dτ. (32)

Figure 1. State variable x1
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Figure 2. State variable x2

4. Stability of positive systems

Consider the autonomous positive fractional system (obtained from (2) for
u(t) = 0, t > 0

dαx

dtα
= Ax(t), 0 < α < 1, x(t) ∈ ℜn

+, t > 0, A ∈ Mn. (33)

Definition 3 The positive fractional system (33) is called asymptotically stable
(shortly stable) if

lim
t→∞

x(t) = 0 for all x0 ∈ ℜn
+. (34)

Theorem 4 The positive fractional system (33) is (asymptotically) stable if and
only if one of the following equivalent conditions is satisfied:

• All coefficients of the polynomial

det[Ins− Â] = sn + ân−1s
n−1 + ...+ â1s+ â0 (35)

are positive, i.e. âk > 0 for k = 0, 1, ..., n− 1.

• All principal minors Mk, k = 1, ..., n of the matrix −Â are positive, i.e.

M1 = |−a11| > 0, M2 =

∣

∣

∣

∣

−a11 −a12
−a21 −a22

∣

∣

∣

∣

> 0, ... ,

Mn = det[−A] > 0.

(36)
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• The diagonal entries of the matrices

Â
(k)
n−k for k = 1, ..., n− 1 (37)

are negative, where Â
(k)
n−k are defined as follows:

Â
(0)
n = Â =









â
(0)
11 · · · â

(0)
1,n

...
. . .

...

â
(0)
n,1 · · · â

(0)
n,n









=

[

â
(0)
11 b̂

(0)
n−1

ĉ
(0)
n−1 Â

(0)
n−1

]

,

Â
(0)
n−1 =









â
(0)
22 · · · â

(0)
2,n

...
. . .

...

â
(0)
n,2 · · · â

(0)
n,n









, b̂
(0)
n−1 = [ â

(0)
12 · · · â

(0)
1,n ], ĉ

(0)
n−1 =









â
(0)
21

...

â
(0)
n,1









(38)

and

Â
(k)
n−k = Â

(k−1)
n−k −

ĉ
(k−1)
n−k

b̂
(k−1)
n−k

â
(k−1)
k+1,k+1

=









â
(k)
k+1,k+1 · · · â

(0)
k+1,n

...
. . .

...

â
(0)
n,k+1 · · · â

(0)
n,n









=

=

[

â
(k)
k+1,k+1 b̂

(k)
n−k−1

ĉ
(k)
n−k−1 Â

(k)
n−k−1

]

,

Â
(k)
n−k−1 =









â
(k)
k+2,k+2 · · · â

(0)
k+2,n

...
. . .

...

â
(0)
n,k+2 · · · â

(0)
n,n









, b̂
(0)
n−k−1 = [ â

(k)
k+1,k+2 · · · â

(k)
k+1,n

],

ĉ
(k)
n−k−1 =









â
(k)
k+2,k+1

...

â
(k)
n,k+1









(39)

for k = 1, ..., n− 1.

• All diagonal entries of the upper (lower) triangular matrix

Ãu =











ã11 ã12 · · · ã1,n
0 ã22 · · · ã2,n
...

...
. . .

...
0 0 · · · ãn,n











, Ãl =











ã11 0 · · · 0
ã21 ã22 · · · 0
...

...
. . .

...
ãn,1 ãn,2 · · · ãn,n











(40)
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are negative, i.e. ãkk < 0 for k = 1, ..., n and the matrices Ã have been obtained
from the matrix Â by the use of elementary row operation.

• There exists a strictly positive vector λ = [ λ1 · · · λn]
T , λk > 0, k =

1, ..., n such that

Âλ < 0. (41)

Proof: By substituting in (4) u(t) = 0, t > 0 we obtain the solution of the
equation (33) in the form

x(t) = eÂtx0. (42)

The system (33) is stable if and only if

lim
t→∞

eÂt = 0 for all x0 ∈ ℜn
+. (43)

The condition (43) is satisfied if and only if Â ∈ Mn. Kaczorek (2002) has shown
that the system (33) with Â ∈ Mn is asymptotically stable if and only if one of
the conditions 1) – 4) is satisfied. If the system is asymptotically stable, then
from condition 1) we have â0 = det[−Â] > 0 and −Â−1 ∈ ℜn×n

+ (see Kaczorek,

2002). Then, using (41) we obtain (−Â−1)(−Â)λ > 0 and λ > 0 if and only if
the system is asymptotically stable. ✷

5. Concluding remarks

Using the Caputo-Fabrizio definition of fractional order derivative, the positivity
and asymptotic stability of the fractional continuous-time linear systems have
been investigated. The solution to the matrix fractional differential state equa-
tions has been derived (Theorem 1). Necessary and sufficient conditions for the
positivity (Theorems 2 and 3) and asymptotic stability of the fractional linear
systems have been established. Tests for checking the asymptotic stability of
the systems (Theorem 4) have been also given. The considerations have been
illustrated by a numerical example. The considerations can be extended to the
descriptor fractional continuous-time linear systems.
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