PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analyzis of rehabilitation systems in regards to requirements towards remote home rehabilitation devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The contemporary international pandemic proved that a flexible approach towards work, trade and healthcare is not only favorable but a must. Hence, the devices enabling home‐rehabilitation became one of the urgent needs of the medical market. The following overview is a part of an R&D project aimed at designing an exoskeleton and developing methods enabling effective home rehabilitation. It contains a comparison of current devices in terms of their kinematics, applications, weights, sizes, and integration with selected ICT technologies. The data is analyzed regarding conclusions from qualitative research, based on in‐depth interviews with physiotherapists and questionnaires organized beforehand. The investigation assesses whether commercial and developed devices enable feedback from a patient by all possible means; hence, if they could allow effective telerehabilitation. Moreover, their capabilities of increasing engagement and accelerating improvements by supervising techniques and measuring biomechanical parameters are evaluated. These outcomes are a base to set the constraints and requirements before designing an exoskeleton dedicated to home treatment.
Twórcy
  • ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, Warsaw
  • Warsaw University of Technology, 02-486, Plac Politechniki 1, Warsaw, 00-661
  • Warsaw University of Technology, 02‐486, Plac Politechniki 1, Warsaw, 00-661
  • ŁUKASIEWICZ Research Network – Industrial Research Institute for Automation and Measurements PIAP, Al. Jerozolimskie 202, Warsaw
Bibliografia
  • [1] “Armeo power website [online]”. https://www.hocoma.com/solutions/armeo‐ power/.Accessed: 2020‐10‐21.
  • [2] “Armin website [online]”. https://sms.hest.ethz.ch/research/current‐research‐projects/armin‐robot. Accessed: 2020‐10‐23.
  • [3] “Barrett technology website [online]”. https://medical.barrett.com/. Accessed: 2020‐10‐22.
  • [4] “The datasheet of motion maker by swortec [online]”. http://www.swortec.ch/index.php/products/motionmaker. Accessed: 2020‐11‐02.
  • [5] “Eksonr by ekso bionics website [online]”. https://eksobionics.com/eksonr/. Accessed: 2021‐01‐15.
  • [6] “Eksoue by ekso bionics website [online]”. https://eksobionics.com/eksoue/, Accessed: 2020‐10‐23.
  • [7] “Hal by cyberdene website [online]”. https://www.cyberdyne.jp/. Accessed: 2021‐01‐15.
  • [8] “Inmotionarm by bionik labs website [online]”.https://www.bioniklabs.com/products/inmotion‐arm. Accessed: 2020‐10‐23.
  • [9] “An interview with hans peter gmünder. pwc[online]”. https://magazine.pwc.ch/en/item‐detail‐view/partake‐in‐life. Accessed: 2021‐01‐15.
  • [10] “Lokomat by hocoma website [online]”. https:/www.hocoma.com/solutions/lokomat/.Accessed: 2021‐01‐15.
  • [11] “Physio by gridbots website [online]”. https://www.gridbots.com/physio. Accessed: 2020‐10‐10.
  • [12] “Physiotherabot project website [online]”. http://ytubiomechatronics.com/portfolio‐item/lower‐limb/, note = Accessed: 2021‐11‐05.
  • [13] “Physiotherabot/w1 website [online]”. http://ytubiomechatronics.com/portfolio‐item/physioterabot‐w1/. Accessed: 2021‐11‐05.
  • [14] “Presentation of prototypes of rehabilitation robots by piap (in polish) [online]”. https://www.youtube.com/watch?v=FSBf5kPEz3k.Accessed: 2021‐01‐15.
  • [15] “Reoambulator by motorika website [online]”. http://motorika.com/reoambulator/. Accessed:2021‐01‐15.
  • [16] “Reoambulator by motorika website [online]”. https://www.rehatechnology.com/en/. Accessed:2021‐01‐15.
  • [17] “Reogo by motorika website [online]”. http://motorika.com/reogo/. Accessed: 2020‐10‐22.
  • [18] “Rewalk website [online]”. https://rewalk.com/.Accessed: 2021‐01‐15.
  • [19] C. Adans‐Dester, A. O’Brien, R. Black‐Schaffer, and P. Bonato. “Upper extremity rehabilitation with the burt robotic arm”, Archives of Physical Medicine and Rehabilitation, vol. 100, no. 12, 2019, e208–e209.
  • [20] J. Ahn, and N. Hogan. “Walking is not like reaching: evidence from periodic mechanical perturbations”, PloS one, vol. 7, no. 3, 2012, e31767.
  • [21] E. Akdoğan, and M. A. Adli. “The design and control of a therapeutic exercise robot for lower limb rehabilitation: Physiotherabot”, Mechatronics, vol. 21, no. 3, 2011, 509–522.
  • [22] E. Akdogan, and M. E. Aktan. “Impedance control applications in therapeutic exercise robots”. In:Control Systems Design of Bio-Robotics and Biomechatronics with Advanced Applications, 395–443. Elsevier, 2020.
  • [23] E. Andrenelli, M. Capecci, L. Di Biagio, L. Pepa,L. Lucarelli, C. Spagnuolo, P. Guidoni, P. Serafini, F. Morgante, and M. Ceravolo. “Improving gait function and sensorimotor brain plasticity through robotic gait training with g‐eo system in parkinson’s disease”, Annals of Physical and Rehabilitation Medicine, vol. 61, 2018, e79–e80.
  • [24] L. N. Awad, A. Esquenazi, G. E. Francisco, K. J. Nolan, and A. Jayaraman. “The rewalk restore™ soft robotic exosuit: a multi‐site clinical trial of the safety, reliabili y, and feasibility of exosuit‐augmented post‐stroke gait rehabilitation”, Journal of neuroengineering and rehabilitation, vol. 17, no. 1, 2020, 1–11.
  • [25] P. Bontje, R. Kruijne, M. Pol, K. Inoue, R. Kobayashi, Y. Ito, and M. Van Hartingsveldt. “Developing an international research of health‐care ict applied for rehabilitation and daily living support between japan and the netherlands”, Assistive Technology, vol. 34, no. 2,2022, 140–147.
  • [26] R. S. Calabrò, M. Russo, A. Naro, D. Milardi, T. Balletta, A. Leo, S. Filoni, and P. Bramanti. “Who may benefit from armeo power treatment? a neurophysiological approach to predict neurorehabilitation outcomes”, PM&R, vol. 8, no. 10, 2016, 971–978.
  • [27] B. Chen, H. Ma, L.‐Y. Qin, F. Gao, K.‐M. Chan, S.‐W. Law, L. Qin, and W.‐H. Liao. “Recent developments and challenges of lower extremityexoskeletons”, Journal of Orthopaedic Translation, vol. 5, 2016, 26–37.
  • [28] Y. Cherni, M. Hajizadeh, F. Dal Maso, and N. A. Turpin. “Effects of body weight suport and guidance force settings on muscle synergy during lokomat walking”, European Journal of Applied Physiology, vol. 121, no. 11, 2021, 2967–2980.
  • [29] O. Cruciger, T. A. Schildhauer, R. C. Meindl, M. Tegenthoff, P. Schwenkreis, M. Citak, and M. Aach. “Impact of locomotion training with a neurologic controlled hybrid assistive limb (hal) exoskeleton on neuropathic pain and health related quality of life (hrqol) in chronic sci: a case study”, Disability and Rehabilitation: Assistive Technology, vol. 11, no. 6, 2016, 529–534.
  • [30] S. De Biase, L. Cook, D. A. Skelton, M. Witham, and R. Ten Hove. “The covid‐19 rehabilitation pandemic”, Age and ageing, vol. 49, no. 5, 2020, 696–700.
  • [31] U. Demir, S. Kocaoğlu, and E. Akdoğan. “Human impedance parameter estimation using artificial neural network for modelling physiotherapist motion”, Biocybernetics and Biomedical Engineering, vol. 36, no. 2, 2016, 318–326.
  • [32] I. Díaz, J. M. Catalan, F. J. Badesa, X. Justo, L. D. Lledo, A. Ugartemendia, J. J. Gil, J. Díez, and N. García‐Aracil. “Development of a robotic device for post‐stroke home tele‐rehabilitation”,Advances in Mechanical Engineering, vol. 10,no. 1, 2018, 1687814017752302.
  • [33] I. Díaz, J. J. Gil, and E. Sánchez. “Lower‐limb robotic rehabilitation: literature review and challenges”, Journal of Robotics, vol. 2011, 2011.
  • [34] J. Dunaj, W. J. Klimasara, and Z. Pilat. “Human‐robot interaction in the rehabilitation robot renus‐1”. In: International Conference on Systems, Control and Information Technologies 2016, 2016, 358–367.
  • [35] D. Eguren, M. Cestari, T. P. Luu, A. Kilicarslan, A. Steele, and J. L. Contreras‐Vidal. “Design of a customizable, modular pediatric exoskeleton for rehabilitation and mobility”. In: 2019 IEEE international conference on systems, man and cybernetics (SMC), 2019, 2411–2416.
  • [36] P. Falkowski. “Light exoskeleton design with topology optimisation and fem simulations for fff technology”, Journal of Automation, Mobile Robotics and Intelligent Systems, 2021, 14–19.
  • [37] P. Falkowski. “An optimisation problem for exoskeleton‐aided functional rehabilitation of an upper extremity”. In: IOP Conference Series: Materials Science and Engineering, vol. 1239, no. 1, 2022, 012012.
  • [38] P. Falkowski. “Predicting dynamics of a rehabilitation exoskeleton with free degrees of freedom”. In: Conference on Automation, 2022, 223–232.
  • [39] P. Falkowski, T. Osiak, and A. Pastor. “Analysis of needs and requirements of kinesiother‐apy in poland for robot design purposes”, Prace Naukowe - Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022.
  • [40] P. Falkowski, T. Osiak, J. Wilk, N. Prokopiuk, B. Leczkowski, Z. Pilat, and C. Rzymkowski. “Study on the applicability of digital twins for home remote motor rehabilitation”, Sensors, vol. 23, no. 2, 2023, 10.3390/s23020911.
  • [41] S. Faran, O. Einav, D. Yoeli, M. Kerzhner, D. Geva, G. Magnazi, S. van Kaick, and K.‐H. Mauritz. “Reo assessment to guide the reogo therapy: Reliability and validity of novel robotic scores”. In: 2009 Virtual Rehabilitation International Conference, 2009, 209–209.
  • [42] P. A. Gómez, M. D. Rodríguez, and V. Amela. “Design of a robotic system for diagnosis and rehabilitation of lower limbs”, arXiv preprint arXiv:1710.08126, 2017.
  • [43] T. Gueye, M. Dedkova, V. Rogalewicz, M. Grunerova‐Lippertova, and Y. Angerova. “Early post‐stroke rehabilitation for upper limb motor function using virtual reality and exoskeleton: equally efficient in older patients”, Neurologia i Neurochirurgia Polska, vol. 55, no. 1, 2021, 91–96.
  • [44] M. Gustavsson, C. Ytterberg, and S. Guidetti. “Exploring future possibilities of using information and communication technology in multidisciplinary rehabilitation after stroke–a grounded theory study”, Scandinavian journal of occupational therapy, vol. 27, no. 3, 2020, 223–230.
  • [45] Y.‐w. Hsieh, K.‐c. Lin, C.‐y. Wu, T.‐y. Shih, M.‐w. Li, and C.‐l. Chen. “Comparison of proximal versus distal upper‐limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial”, Scientific reports, vol. 8, no. 1, 2018, 1–11.
  • [46] N. Iivari, S. Sharma, and L. Ventä‐Olkkonen. “Digital transformation of everyday life–how covid‐19 pandemic transformed the basic education of the young generation and why information management research should care?”, International Journal of Information Management, vol. 55, 2020, 102183.
  • [47] M. Iosa, A. Martino Cinnera, F. Capone, A. Cruciani, M. Paolucci, V. Di Lazzaro, S. Paolucci, and G. Morone. “Clinical interpretation of working volume and weight support in upper limb robotic neurorehabilitation after stroke”, Applied Sciences, vol. 11, no. 24, 2021, 12123.
  • [48] L. J. Jasinski. “Structural exoskeletons and soft fabric exosuits for assistive walking”. In: Wearable Robotics, 311–333. Elsevier, 2020.
  • [49] B. A. Jnr. “Use of telemedicine and virtual care for remote treatment in response to covid‐19 pandemic”, Journal of medical systems, vol. 44, no. 7, 2020, 1–9.
  • [50] G. J. Kim, J. Hinojosa, A. K. Rao, M. Batavia, and M. W. O’Dell. “Randomized trial on the effects of attentional focus on motor training of the upper extremity using robotics with individuals after chronic stroke”, Archives of physical medicine andrehabilitation, vol. 98, no. 10, 2017, 1924–1931.
  • [51] J. H. Kim. “Effects of robot‐assisted therapy on lower limb in patients with subacute stroke”, Journal of the Korea Academia-Industrial cooperation Society, vol. 17, no. 7, 2016, 459–466.
  • [52] W. Klimasara, J. Dunaj, P. Stempniak, and Z. Pilat. “Renus‐1 and renus‐2, the assisted robots system for after stroke mobility rehabilitation”, Prace Naukowe Politechniki Warszawskiej. Elektronika, no. 175, t. 1, 2010, 55–62.
  • [53] W. J. Klimasara, A. Bratek, M. Pachuta, and Z. Pilat. “Systemy mechatroniczne w rehabilitacji ruchowej”, Pomiary Automatyka Robotyka, vol. 13, no. 2, 2009, 577–586.
  • [54] K. Kong, J. Choi, K.‐W. Park, J. Park, D.‐H. Lee, E. Song, B. Na, S. Jeon, T. Kim, H. Choi, et al. “The history and future of the walkon suit: A powered exoskeleton for people with disabilities”, IEEE Industrial Electronics Magazine, 2021.
  • [55] D. Kuhn and B. Freyberg‐Hanl. “Exoskelett: Therapie system oder hilfsmittel zum behinderung‐sausgleich”, Trauma und Berufskrankheit, vol. 20, no. 4, 2018, 254–259.
  • [56] H. Y. Lee, J. H. Park, and T.‐W. Kim. “Comparisons between locomat and walkbot robotic gait training regarding balance and lower extremity function among non‐ambulatory chronic acquired brain injury survivors”, Medicine, vol. 100, no. 18, 2021.
  • [57] M. F. Levin. “What is the potential of virtual reality for post‐stroke sensorimotor rehabilitation?”, Expert review of neurotherapeutics, vol. 20, no. 3, 2020, 195–197.
  • [58] Y. Liu, X. Li, A. Zhu, Z. Zheng, and H. Zhu. “Design and evaluation of a surface electromyography‐controlled lightweight upper arm exoskeleton rehabilitation robot”, International Journal of Advanced Robotic Systems, vol. 18, no. 3, 2021, 17298814211003461.
  • [59] S. Macovei, and I. Doroftei. “A short overview of upper limb rehabilitation devices”. In: IOP Conference Series: Materials Science and Engineering, vol. 145, no. 5, 2016, 052014.
  • [60] M. N. Marwaa, H. K. Kristensen, S. Guidetti, and C. Ytterberg. “Physiotherapists’ and occupational therapists’ perspectives on information and communication technology in stroke rehabilitation”, Plos one, vol. 15, no. 8, 2020, e0236831.
  • [61] K. Miura, M. Koda, K. Tamaki, M. Ishida, A. Marushima, T. Funayama, H. Takahashi, H. Noguchi, K. Mataki, Y. Yasunaga, et al. “Exercise training using hybrid assistive limb (hal) lumbar type for locomotive syndrome: a pilot study”, BMC Musculoskeletal Disorders, vol. 22, no. 1, 2021, 1–8.
  • [62] M. Mohammadi, H. Knoche, M. Thøgersen, S. H. Bengtson, M. A. Gull, B. Bentsen, M. Gaihede, K. E. Severinsen, and L. N. Andreasen Struijk.“Eyes‐free tongue gesture and tongue joystick control of a five dof upper‐limb exoskeleton for severely disabled individuals”, Frontiers in Neuroscience, vol. 15, 2021, 739279.
  • [63] T. Nef, M. Guidali, V. Klamroth‐Marganska, and R. Riener. “Armin‐exoskeleton robot for stroke rehabilitation”. In: World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, 2009, 127–130.
  • [64] I.‐A. Nițică, and E. Nechifor. “Antrenamentul mersului cu ajutorul sistemului robotic g‐eo evolution”, Journal of Physical Rehabilitation and Sports Medicine, no. 2, 2020, 20–29.
  • [65] I.‐A. Nițică, and E. Nechifor. “Antrenamentul mersului cu ajutorul sistemului robotic g‐eo evolution”, Journal of Physical Rehabilitation and Sports Medicine, no. 2, 2020, 20–29.
  • [66] N. Pavón‐Pulido, J. A. López‐Riquelme, and J. J. Feliú‐Batlle. “Iot architecture for smart control of an exoskeleton robot in rehabilitation by using a natural user interface based on gestures”, Journal of Medical Systems, vol. 44, no. 9, 2020, 1–10.
  • [67] J. Prvu Bettger, and L. J. Resnik. “Telerehabilitation in the age of covid‐19: an opportunity for learning health system research”, Physical Therapy, vol. 100, no. 11, 2020, 1913–1916.
  • [68] N. Rehmat, J. Zuo, W. Meng, Q. Liu, S. Q. Xie,and H. Liang. “Upper limb rehabilitation using robotic exoskeleton systems: A systematic review”, International Journal of Intelligent Robotics and Applications, vol. 2, no. 3, 2018, 283–295.
  • [69] A. Roy, H. I. Krebs, J. E. Barton, R. F. Macko, and L. W. Forrester. “Anklebot‐assisted locomotor training after stroke: A novel deficit‐adjustedcontrol approach”. In: 2013 IEEE International Conference on Robotics and Automation, 2013, 2175–2182.
  • [70] A. Roy, H. I. Krebs, S. L. Patterson, T. N. Judkins, I. Khanna, L. W. Forrester, R. M. Macko, and N. Hogan. “Measurement of human ankle stiffness using the anklebot”. In: 2007 IEEE 10th International Conference on RehabilitationRobotics, 2007, 356–363.
  • [71] C. Schmitt, and P. Métrailler. “The motion maker™: a rehabilitation system combining an orthosis with closed‐loop electrical muscle stimulation”. In: 8th Vienna international workshop on functional electrical stimulation, no. CONF, 2004, 117–120.
  • [72] R. A. Søraa, and E. Fosch‐Villaronga. “Exoskeletons for all: The interplay between exoskeletons, inclusion, gender, and intersectionality”, Paladyn, Journal of Behavioral Robotics, vol. 11, no. 1, 2020, 217–227.
  • [73] P. Soto‐Acosta. “Covid‐19 pandemic: Shifting digital transformation to a high‐speed gear”, Information Systems Management, vol. 37, no. 4, 2020, 260–266.
  • [74] S. Straudi, G. Severini, M. Da Roit, L. D. M. Pizzongolo, C. Martinuzzi, and N. Basaglia. “The dose of robot‐assisted gait therapy may influence functional recovery in a multidisciplinary rehabilitation program: an exploratory retrospective study”, International Journal of Rehabilitation Research, vol. 43, no. 2, 2020, 175–182.
  • [75] K. Swaminathan, and H. I. Krebs. “Analysis of the anklebot training as a method for reducing lower‐limb paretic impairment a case study in electromyography”. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), 2015, 555–558.
  • [76] K. Takahashi, T. Takebayashi, S. Amano, Y. Uchiyama, K. Domen, and K. Hachisuka. “Constrained‐induced movement therapy transfer the function gained by upper arm robotic therapy into daily activities”. In: STROKE, vol. 51, 2020.
  • [77] T. Takebayashi, K. Takahashi, S. Amano, Y. Uchiyama, M. Gosho, K. Domen, and K. Hachisuka. “Assessment of the efficacy of reogo‐j robotic training against other rehabilitation therapies for upper‐limb hemiplegia after stroke: Protocol for a randomized controlled trial”, Frontiers in neurology, vol. 9, 2018, 730.
  • [78] R. B. van Dijsseldonk, I. J. van Nes, A. C. Geurts, and N. L. Keijsers. “Exoskeleton home and community use in people with complete spinal cord injury”, Scientiϔic reports, vol. 10, no. 1, 2020, 1–8.
  • [79] J. Wilk, and P. Falkowski. “A concept of detecting patient hazards during exoskeleton‐aided remote home motor rehabilitation”, Prace Naukowe - Politechnika Warszawska. Elektronika z. 197, Postępy robotyki. T. 2, 2022.
  • [80] H. Zheng, R. Davies, T. Stone, S. Wilson, J. Hammerton, S. J. Mawson, P. Ware, N. D. Black, N. D. Harris, C. Eccleston, et al. “Smart rehabilitation: Implementation of ict platform to suport home‐based stroke rehabilitation”. In: International Conference on Universal Access in HumanComputer Interaction, 2007, 831–840.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e77062c7-e133-47c7-b119-31d4eb225665
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.