PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Vibratory Shot Peening of Elements Cut with Abrasive Water Jet

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the effect of technological parameters of vibratory shot peening on the roughness and microhardness of the surface layer of shot peened objects. Moreover, the surface topography results from vibratory shot peening was analyzed. In the experiment, samples made of 1.4301 stainless steel were used, which were cut by abrasive water jet (AWJ). The geometrical structure of the surface after vibratory shot peening was changed. The surface roughness was obtained in the range of Rsk = -0.600 ÷ -1.115 and Sa = 3.01 ÷ 6.53 μm, The value of microhardness ΔHV, near to the surface, is from 36 HV0.05 to 100 HV0.05. The changes in microhardness reach on the depth gh = 100 μm. An analysis of variance ANOVA for the investigated dependent variables was performed. The Tukey's test was used to checked the influence of the independent variable on the dependent variable. The aim to obtain favorable properties of the surface layer of elements after abrasive water jet cutting, it is recommended to use a vibratory shot peening time of approx. 6 minutes and balls of diameter d = 6 mm.
Twórcy
  • Mechanical Engineering Faculty, Lublin University of Technology
Bibliografia
  • 1. Yuvaraj N., Pradeep Kumar M., Mugilvalavan M.,Shakeel A.L.A.K. Abrasive Water Jet Machining process: A state of art of review. Journal of Manufacturing Processes. 2020; 49: 271–322.
  • 2. Yuvaraj N., Pradeep Kumar M. Study and evaluation of abrasive water jet cutting performance on AA5083-H32 aluminum alloy by varying the jet impingement angles with different abrasive mesh sizes. Machining Science and Technology. 2017; 21(3): 385–415.
  • 3. Supriya S.B., Srinivasa S. Machinability Studies on Stainless steel by abrasive waterjet – Review. Materials Today: Proceedings. 2018; 5: 2871–2876.
  • 4. Löschner P., Jarosz K., Niesłony P. Investigation of the effect of cutting speed on surface quality in abrasive water jet cutting of 316L stainless steel. Procedia Engineering. 2016; 149: 276–282.
  • 5. Badgujar P.P., Rathi M.G. Analysis of Surface roughness in abrasive water jet cutting of stainless steel. International Journal of Engineering Research and Technology. 2014; 3(6): 209–214.
  • 6. Yuvaraj N., Pradeep Kumar M. Surface integrity studies on abrasive water jet cutting of AISI D2 steel. Materials and Manufacturing Processes, 2017; 32(2).
  • 7. Horodek P., Dryzek J., Wróbel M. Positron Annihilation Study of Defects Induced by Various Cutting Methods in Stainless Steel Grade 304. Tribology Letters. 2012; 45: 341–347.
  • 8. Kecik K., Ciecielag K., Zaleski K. Damage detection by recurrence and entropy methods on the basis of time series measured during composite milling. International Journal of Advanced Manufacturing Technology. 2020; 111(1–2): 549–563.
  • 9. Ciecieląg K. Effect of Composite Material Fixing on Hole Accuracy and Defects During Drilling. Advances in Science and Technology Research Journal. 2021; 15(3): 54–65.
  • 10. Akkurt A. Surface properties of the cut face obtained by different cutting methods from AISI 304 stainless steel. Indian Journal of Engineering & Materials Sciences. 2009; 16: 373–384.
  • 11. Górka J., Skiba R. Influence of thermal cutting and water jet cutting processes on the properties and quality of cut surfaces of low-alloy steels with high yield point. Welding Review. 2013; 2: 11–18.[in Polish]
  • 12. Skoczylas A., Zaleski K. Selected Properties of the Surface Layer of C45 Steel Parts Subjected to Laser Cutting and Ball Burnishing. Materials. 2020; 13(15): 1–19.
  • 13. Zaleski K., Skoczylas A., Ciecieląg K. The Investigations of the Surface Layer Properties of C45 Steel After Plasma Cutting and Centrifugal Shot Peening. [in]: Industrial Measurements in Machining, Industrial Measurements in Machining / eds.: Królczyk G. M., Niesłony P., Królczyk J.. Cham: Springer; 2020; 172–185.
  • 14. Matuszak J., Klonica M., Zagorski I. Effect of brushing conditions on axial forces in ceramic brush surface treatment. [in]: 2019 IEEE 5th International Workshop on Metrology for AeroSpace, Turin 2019, 644–648.
  • 15. Matuszak J. Effect of Ceramic Brush Treatment on the Surface Quality and Edge Condition of Aluminium Alloy after Abrasive Waterjet Machining. Advances in Science and Technology Research Journal. 2021; 15(3): 254–263.
  • 16. Canalsa L., Badreddineb J., McGillivrayc B., Miaoa H.Y., Levesquea M. Effect of vibratory peeningon the sub-surface layer of aerospace materials Ti-6Al-4V and E-16NiCrMo13. Journal of Materials Processing Technology. 2019; 264: 91–106.
  • 17. Miao H.Y., Canals L., McGillivray B., Lévesque M. Comparison between vibratory peening and shot peening processes. Proceedings, 521–526.
  • 18. Harada Y., Fukuara K., Haga S. Influence of microshot peening on surface layer characteristics of structural steel. Journal of Materials Processing Technology, 191, 2007, 297–301.
  • 19. Nie L., Wu Y., Gong H., Chen D., Guo X. Effect of shot peening on redistribution of residual stress field in friction stir welding of 2219 aluminum alloy. Materials. 2020; 13(14): 1– 13.
  • 20. Zhan K., Wu Y., Li J., Zhao B., Yan Y., Xie L., Ji V. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X – ray diffraction method. Applied Surface Science. 2018; 435: 1257–1264.
  • 21. Zhang J.Y., Chang F.Y., Cui M.C., Tan L., Sun Y.Q. Three-dimensional modeling and reconstructive change of residual stress during machining proces of milling, polishing, heat treatment, vibratory finishing, and shot peening of fan blade. Advances in Manufacturing. 2021; 9: 430–445.
  • 22. Walczak M., Szala M. Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing. Archives of Civil and Mechanical Engineering. 2021; 21: 157.
  • 23. Zaleski K. The effect of shot peening on the fatigue life of parts made of titanium alloy Ti-6Al-4V. Eksploatacja I Niezawodnosc- Maintenance and Reliability. 2009; 44(4): 65–71.
  • 24. Zaleski K. The effect of vibratory and rotational shot peening and wear on fatigue life of steel. Eksploatacja I Niezawodnosc - Maintenance and Reliability. 2017; 19(1): 102–107.
  • 25. Kubit A., Bucior M., Zielecki W., Stachowicz F. The impact of heat treatment and shot peening on the fatigue strength of 51CrV4 steel. Procedia Structural Integrity. 2016; 2: 3330–3336.
  • 26. Das T., Erdogan A., Kursuncu B., Maleki E., Unal O. Effect of severe vibratory peening on microstructural and tribological properties of hot rolled AISI 1020 mild steel. Surface and Coatings Technology. 2020; 403(15); 126383.
  • 27. Rudawska A., Zaleski K., Miturska I., Skoczylas A. Effect of application of different surface treatment methods on the strength of titanium alloy sheet adhesive lap joints. Materials. 2019; 12(24): 1–13.
  • 28. Kłonica M., Kuczmaszewski J. Modification of Ti6Al4V Titanium Alloy Surface Layer in the Ozone Atmosphere. Materials. 2019; 12(13): 2113, 1–14.
  • 29. Kłonica M. Analysis of the effect of selected factors on the strength of adhesive joints. IOP Conference Series: Materials Science and Engineering. 2018; 393: 1–8.
  • 30. Luo S., Zhou L., Nie X., Li Y., He W. The compound process of laser shock peening and vibratory finishing and its effect on fatigue strength of Ti-3.5Mo-6.5Al-1.5Zr-0.25Si titanium alloy. Journal of Alloys and Compounds. 2019; 783: 828–835.
  • 31. Petrů J., Zlámal T., Špalek F., Čep R. Surface microhardening studies on steels after high feed milling. Advances in Science and Technology Research Journal. 2018; 12(2): 222–230.
  • 32. Sedlacek M.. Podgornik B., Vizitin J. Influence of surface preparation on roughness parameters, friction and wear. Wear. 2009; 266: 482–487.
  • 33. Zaleski K., Skoczylas A. Effect of vibration shot peening parameters upon shapes of bearing curves of alloy steel surface. Advances in Science and Technology Research Journal. 2015; 9(25): 20–26.
  • 34. Skoczylas A., Zaleski K., Zaleski R., Gorgol M. Analysis of Surface Properties of Nickel Alloy Elements Exposed to Impulse Shot Peening with the Use of Positron Annihilation. Materials. 2021; 14(23), 1–17.
  • 35. Matuszak J., Zaleski K., Skoczylas A., Ciecieląg K., Kęcik K. Influence of Semi-Random and Regular Shot Peening on Selected Surface Layer Properties of Aluminum Alloy. Materials. 2021; 14(24): 1–22.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e76726ce-c0b8-48ba-99a6-421d012aa4ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.