PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the ozonation impact on adsorption efficiency in surface water treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Organic substances in water, both of natural and synthetic origin, especially their share in water treatment by-products can pose a threat to drinkers. That is why adsorption, as a very effective process of dissolved organic compounds removal is commonly used in surface water treatment systems. For process design and optimization, mathematical models both mechanistic and statistics are created. The results of the investigation of granular activated carbon (GAC) bed adsorption in a pilot plant with a capacity of 3 m3/h have been presented. Two systems have been tested – without ozonation and with ozonation before GAC adsorption. The models of the kinetics of GAC adsorption capacity exhaustion, the model of minimal GAC bed depth (adsorption zone) for assumed process efficiency (C/CO), as well as the model of adsorption zone movement velocity to the bottom of GAC bed, have been created. For the state of adsorptive equilibrium, the first model enables the determination of the isotherm parameters of the Freundlich type, the two other models are used for the calculation of GAC bed run time for the certain bed depth and assumed efficiency. It has been shown that in this case (water pollution, GAC type, pretreatment) ozonation plays a minor role.
Rocznik
Strony
95--107
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Wrocław University of Science and Technology, Department of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wrocław University of Science and Technology, Department of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
  • Wrocław University of Science and Technology, Department of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
Bibliografia
  • [1] WANG W., HO L., LEWIS D.M., BROOKES J.D., NEWCOMBE G., Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins, Water Res., 2007,41 (18), 4262-4270. DOI: 10.1016/j.watres.2007.05.057.
  • [2] KIM J., KANG B., DBPs removal in GAC filter-adsorber, Water Res., 2008, 42 (1–2), 145–152. DOI: 10.1016/j.watres.2007.07.040.
  • [3] GBOLADE A.A., Inventory of antidiabetic plants in selected districts of Lagos State, Nigeria, J. Eth., 2009, 121 (1), 135–139. DOI: 10.1016/j.jep.2008.10.013
  • [4] SUMPTER J.P., Pharmaceuticals in the environment: moving from a problem to a solution, [In:] K. Kümmerer, M. Hempel (Eds.), Green and Sustainable Pharmacy, Springer, Berlin 2010. DOI 10.1007/978-3-642-05199-9.
  • [5] ORMAD M.P., MIGUEL N., CLAVER A., MATESANZ J.M., OVELLEIRO J.L., Pesticides removal in the process of drinking water production, Chemosphere, 2008, 71 (1), 97–106. DOI: 10.1016/j.chemosphere. 2007.10.006.
  • [6] ABDENNOURI M., BAALALA M., GALADI A., EL MAKHFOUK M., BENSITEL M., NOHAIR K., SADIQ M., BOUSSAOUD A., BARKA N., Photocatalytic degradations of pesticides by titanium dioxide and titanium pillared purified clays, Arab. J. Chem., 2016, 9 (1), 313–318. DOI: 10.1016/j.arabjc.2011.04.005.
  • [7] CUNHA C. DE L. DA N., SCUDELARI A.C., ROSMAN P.C.C., Using modelling techniques to assess sewage pollution in the Potengi River Estuary, Brazil, Water Soc. III, Wit Press, 2015, 237–248. DOI: 10.2495/WS150201.
  • [8] REYNEL-ÁVILA H.E., AGUAYO-VILLARREAL I.A., DIAZ-MUÑOZ L.L., MORENO-PÉREZ J., SÁNCHEZ- -RUIZ F.J., ROJAS-MAYORGA C.K., BONILLA-PETRICIOLET A., A review of the modeling of adsorption of organic and inorganic pollutants from water using artificial neural networks, Ads. Sci. Technol., 2022. DOI: 10.1155/2022/9384871.
  • [9] ELMA M., PRATIWI A.E., RAHMA A., RAMPUN E.L.A., MAHMUD M., ABDI C., BILAD M.R., Combination of coagulation, adsorption, and ultrafiltration processes for organic matter removal from peat water, Sust., 2022, 14 (1), 370. DOI: 10.3390/su14010370.
  • [10] HAMMES F., MEYLAN S., SALHI E., KÖSTER O., EGLI T., VON GUNTEN U., Formation of assimilable organic carbon (AOC) and specific natural organic matter (NOM) fractions during ozonation of phytoplankton, Water Res., 2007, 41 (7), 1447–1454. DOI: 10.1016/j.watres.2007.01.001.
  • [11] LUO Y., GUO W., NGO H.H., NGHIEM L.D., HAI F.I., ZHANG J., WANG X.C., A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Tot. Env., 2014, 473 (1), 619–641. DOI: 10.1016/j.scitotenv.2013.12.065.
  • [12] URASE T., KIKUTA T., Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process, Water Res., 2005, 39 (7), 1289–1300. DOI: 10.1016/j.watres. 2005.01.015.
  • [13] IGNATOWICZ K., Selection of sorbent for removing pesticides during water treatment, J. Hazard. Mater., 2009,169 (1), 953–957. DOI: 10.1016/j.jhazmat.2009.04.061.
  • [14] YOUSEF R.I., EL-ESWED B., ALA’A H., Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies, Chem. Eng. J., 2011, 171 (3), 1143–1149. DOI: 10.1016/j.cej.2011.05.012 Get rights and content.
  • [15] CAO C.Y., QU J., YAN W.S., ZHU J.F., WU Z.Y., SONG W.G., Low-cost synthesis of flowerlike α-Fe2O3 nanostructures for heavy metal ion removal: adsorption property and mechanism, Langmuir, 2012, 28 (9), 4573–4579. DOI: 10.1021/la300097y.
  • [16] HAMIDI H.P., KENARI S.L.D., BASU O.D., Simultaneous TOC and ammonia removal in drinking-water bio-filters. Influence of pH and alkalinity, J. Environ. Eng., 2020, 146 (8), 04020080. DOI: 10.1061/(ASCE) EE.1943-7870.0001758.
  • [17] LIU Z., MILLS E.C., MOHSENI M., BARBEAU B., BÉRUBÉ P.R., Biological ion exchange as an alternative to biological activated carbon for natural organic matter removal. Impact of temperature and empty bed con-tact time (EBCT), Chemosphere, 2022, 288, 132466. DOI: 10.1016/j.chemosphere.2021.132466.
  • [18] PRUSS A., MACIOŁEK A., LASOCKA-GOMUŁA I., Effect of biological activity of carbon deposits on the efficiency of removal of organic compounds from water, Ochr. Środ., 2009, 31 (4), 31–34 (in Polish).
  • [19] JESIONOWSKI T., ZDARTA J., KRAJEWSKA B., Enzyme immobilization by adsorption: A review, Adsorption, 2014, 20 (5–6), 801–821. DOI 10.1007/s10450-014-9623-y.
  • [20] UNUABONAH E.I., OMOROGIE M.O., OLADOJA N.A., Modeling in adsorption. Fundamentals and applications, [In:] G.Z. Kyzas, A.C. Mitropoulos (Eds.), Composite Nanoadsorbents, Elsevier, 2019, 85–118). DOI: 10.1016/B978-0-12-814132-8.00005-8.
  • [21] QURESHI S., YUSUF A., ALI SHAIKH A., INC M., BALEANU D., Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels, Chaos: Int. J. Nonl. Sci., 2020, 30 (4), 043106. DOI: 10.1063/1.5121845.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7670d40-8ba5-4caa-b5e6-79d134ca04bc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.