PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling, simulation, and validation of a TB41 crash test of the H2/W5/B concrete vehicle restraint system

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper addresses numerical simulations of a concrete vehicle restraint system. The model is described in detail. The advanced material law of the continuous surface cap model was used to analyze the damage locations in concrete barrier segments. The results were validated against the TB41 full-scale crash test. The test was conducted in compliance with European standard EN 1317, and the validation was performed in accordance with the PD CEN/TR 16303 technical report. The force and moment envelopes of the road safety barrier during a vehicle crash are provided. The detailed concrete segment model successfully reproduced the characteristic splitting failure cracks that were found near the connection of the adjacent barrier segments in the actual structure after the full-scale crash test.
Rocznik
Strony
467--489
Opis fizyczny
Bibliogr. 60 poz., fot., rys., wykr.
Twórcy
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80‑233 Gdańsk, Poland
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80‑233 Gdańsk, Poland
Bibliografia
  • [1] WHO. Global status report on road safety. 2018. https ://www.who.int/publi catio ns-detai l/globa l-statu s-repor t-on-roads afety -2018.
  • [2] Budzyński M, Wilde K, Jamroz K, Chróścielewski J, Witkowski W, Burzyński S, Bruski D, Jeliński Ł, Pachocki Ł. The effects of vehicle restraint systems on road safety. MATEC Web Conf. 2019;05003:1–8. https ://doi.org/10.1051/matec conf/20192 6205003.
  • [3] Budzyński M, Gobis A, Jamroz K, Jeliński Ł, Ostrowski K. Road restraint systems as a basis for roadside safety improvement. IOP Conf Ser Mater Sci Eng. 2019;471:1–10. https ://doi.org/10.1088/1757-899X/471/6/06202 9.
  • [4] Budzyński M, Jamroz K, Jeliński Ł. Assessment of road restraint systems in Polish conditions. J KONBiN. 2018;45:325–43. https ://doi.org/10.2478/jok-2018-0017.
  • [5] European Standard EN 1317-1:2010. Road restraint systems – Part 1: terminology and general criteria for test methods, 2010.
  • [6] European Standard EN 1317-2:2010. Road restraint systems – Part 2: performance classes, Impact test acceptance criteria and test methods for safety barriers including vehicle parapets, 2010.
  • [7] Kuryłowicz-Cudowska A. Determination of thermophysical parameters involved in the numerical model to predict the temperature field of cast-in-place concrete bridge deck. Materials. 2019;12:3089. https ://doi.org/10.3390/ma121 93089 .
  • [8] Mikołajków L. Drogowe bariery ochronne betonowe Mag Autostrady. 2006;12:20–6.
  • [9] Zain MFBM, Mohammed HJ. Concrete road barriers subjected to impact loads: an overview. Lat Am J Solids Struct. 2015;12:1824–58. https ://doi.org/10.1590/1679-78251 783.
  • [10] NCHRP. Procedures for verification and validation of komputer simulations used for roadside safety applications. 2011. https ://doi.org/10.17226 /17647.
  • [11] Wekezer J, Oskard M, Logan R, Zywicz E. Vehicle impact simulation. J Transp Eng. 1993;199:598–617.
  • [12] Wekezer JW, Kreja I, Issa M. Retrofit analysis of florida beamand-post reinforced concrete bridge barriers. Eng. Trans. 2002;50:187–211.
  • [13] Bonin G, Giuseppe C, Loprencipe G, Ranzo A. Road safety barriers with short elements of lightweight concrete. In: II International Congress SIIV-New Technology Modelling Tools Road-Compend. Papers-27–29 Ottobre (2004).
  • [14] Ren Z, Vesenjak M. Computational and experimental crash analysis of the road safety barrier. Eng Fail Anal. 2005;12:963–73. https ://doi.org/10.1016/j.engfa ilana l.2004.12.033.
  • [15] Borovinšek M, Vesenjak M, Ulbin M, Ren Z. Simulation of crash tests for high containment levels of road safety barriers. Eng Fail Anal. 2007;14:1711–8. https ://doi.org/10.1016/j.engfa ilana l.2006.11.068.
  • [16] Itoh Y, Liu C, Kusama R. Dynamic simulation of collisions of heavy high-speed trucks with concrete barriers. Chaos Solitons Fractals. 2007;34:1239–44. https ://doi.org/10.1016/j.chaos.2006.05.059.
  • [17] Borkowski W, Hryciów Z, Rybak P, Wysocki J. Testing the results of a passenger vehicle collision with a rigid barrier. J. KONES Powertrain Transp. 2010;17:1–7.
  • [18] Borkowski W, Hryciów Z, Rybak P, Wysocki J. Numerical simulation of the standard TB11 and TB32 tests for a concrete safety barrier. J KONES Powertrain Transp. 2010;17:63–71.
  • [19] Wang Q, Fang H, Li N, Weggel DC, Wen G. An efficient FE model of slender members for crash analysis of cable barriers. Eng Struct. 2013;52:240–56. https ://doi.org/10.1016/j.engstruct.2013.02.027.
  • [20] Li N, Fang H, Zhang C, Gutowski M, Palta E, Wang Q. A numerical study of occupant responses and injuries in vehicular crashes into roadside barriers based on finite element simulations. Adv Eng Softw. 2015;90:22–40. https ://doi.org/10.1016/j.adven gsoft.2015.06.004.
  • [21] Abraham N, Ghosh B, Simms C, Thomson R, Amato G. Assessment of the impact speed and angle conditions for the EN1317 barrier tests. Int J Crashworthiness. 2016;21:211–21. https ://doi.org/10.1080/13588 265.2016.11644 44.
  • [22] Klasztorny M, Nycz DB, Szurgott P. Modelling and simulation of crash tests of N2-W4-A category safety road barrier in horizontal concave arc. Int J Crashworthiness. 2016;21:644–59. https ://doi.org/10.1080/13588 265.2016.12129 62.
  • [23] Klasztorny M, Zielonka K, Nycz DB, Posuniak P, Romanowski RK. Experimental validation of simulated TB32 crash tests for SP-05/2 barrier on horizontal concave arc without and with composite overlay. Arch Civ Mech Eng. 2018;18:339–55. https ://doi.org/10.1016/j.acme.2017.07.007.
  • [24] Mohan M, Canceri J, Jackson J. Simulating barrier crashworthiness with high certainty and ensuring safety in design, 10th Austroads Bridge Conference in Melbourne, 2017.
  • [25] Yin H, Fang H, Wang Q, Wen G. Design optimization of a MASH TL-3 concrete barrier using RBF-based metamodels and nonlinear finite element simulations. Eng Struct. 2016;114:122–34. https ://doi.org/10.1016/j.engst ruct.2016.02.009.
  • [26] Yin H, Xiao Y, Wen G, Fang H. Design optimization of a new W-beam guardrail for enhanced highway safety performance. Adv Eng Softw. 2017;112:154–64.
  • [27] Wang Q, Fang H, Yin H. A probability-based approach for assessment of concrete median barriers. In: International Conference on Transport Development. 2018;171–9.
  • [28] Wilde K, Jamroz K, Bruski D, Budzyński M, Burzyński S, Chróścielewski J, Witkowski W. Curb-to-barrier face distance variation in a TB51 bridge barrier crash test simulation. Arch Civ Eng. 2017;63:187–99.
  • [29] PD CEN/TR 16303-1:2012. Road restraint systems-guidelines for computational mechanics of crash testing against vehicle restraint system. Part 1: common reference information and reporting. 2012.
  • [30] PD CEN/TR 16303-2:2012. Road restraint systems-guidelines for computational mechanics of crash testing against vehicle restraint system. Part 2: vehicle modelling and verification. 2012.
  • [31] PD CEN/TR 16303-3:2012. Road restraint systems-guidelines for computational mechanics of crash testing against vehicle restraint system. Part 3: test item modelling and verification. 2012.
  • [32] PD CEN/TR 16303-4:2012. Road restraint systems-guidelines for computational mechanics of crash testing against vehicle restraint system. Part 4: validation procedures. 2012.
  • [33] Gálvez JC, Benítez JM, Tork B, Casati MJ, Cendón DA. Splitting failure of precast prestressed concrete during the release of the prestressing force. Eng Fail Anal. 2009;16:2618–34. https ://doi.org/10.1016/j.engfa ilana l.2009.04.023.
  • [34] Rucka M, Wilde K. Experimental study on ultrasonic monitoring of splitting failure in reinforced concrete. J Nondestruct Eval. 2013;32:372–83. https ://doi.org/10.1007/s1092 1-013-0191-y.
  • [35] Mohammed HJ, Zain MFBM. Simulation assessment and theoretical verification of a new design for portable concrete barriers. KSCE J Civ Eng. 2017;21:851–62. https ://doi.org/10.1007/s1220 5-016-0603-5.
  • [36] Wekezer JW, Kreja I, Gilbert C. Conceptual analysis of an aesthetic bridge barrier. Report (1997).
  • [37] Murray Y. Users manual for LS-DYNA concrete material model 159. 2007.
  • [38] Murray Y, Abu-Odeh A, Bligh R. Evaluation of LS-DYNA concrete material model 159. 2007.
  • [39] Hallquist JO. LS-DYNA theory manual. 2006;680.
  • [40] LSTC, LS-DYNA R8.0 keyword user’s manual. 2015.
  • [41] Jiang H, Zhao J. Calibration of the continuous surface cap model for concrete. Finite Elem Anal Des. 2015;97:1–19. https ://doi.org/10.1016/j.finel .2014.12.002.
  • [42] Bielenberg RW, Faller RK, Quinn TE, Sicking DL, Reid JD. Development of a retrofit low-deflection. Temporary Concrete Barrier System. 2014.
  • [43] Agrawal AK, Xu X. Finite element simulation of truck impacts on highway bridge piers. 2016. https ://doi.org/10.1007/bf024 81509 .
  • [44] Zhou D, Li R, Wang J, Guo C. Study on impact behavior and impact force of bridge pier subjected to vehicle collision. Shock Vib. 2017;2017:1–12. https ://doi.org/10.1155/2017/70853 92.
  • [45] Miśkiewicz M, Bruski D, Chróścielewski J, Wilde K. Safety assessment of a concrete viaduct damaged by vehicle impact and an evaluation of the repair. Eng Fail Anal. 2019;106:104147. https ://doi.org/10.1016/j.engfa ilana l.2019.10414 7.
  • [46] Cowper GR, Symonds PS. Strain hardening and strain-rate effects in the impact loading of cantilever beams. Report no. 28. 1957.
  • [47] Wu W, Thomson R. A study of the interaction between a guardrail post and soil during quasi-static and dynamic loading. Int J Impact Eng. 2007;34:883–98. https ://doi.org/10.1016/j.ijimpeng.2006.04.004.
  • [48] Pachocki Ł, Wilde K. Numerical simulation of the influence of the selected factors on the performance of a concrete road barier H2/W5/B. MATEC Web Conf. 2018;01014:1–9. https ://doi.org/10.1051/matec conf/20182 31010 14.
  • [49] Pachocki Ł, Bruski D, Burzyński S, Chróścielewski J, Wilde K, Witkowski W. On the influence of the acceleration recording time on the calculation of impact severity indexes. MATEC Web Conf. 2018;03010:1–8. https ://doi.org/10.1051/matec conf/20182 1903010.
  • [50] Wilde K, Bruski D, Burzyński S, Chróścielewski J, Pachocki Ł. LS-DYNA simulations of the impacts of a 38-ton heavy goods vehicle into a road cable barrier. In: 12th European LS-DYNA conference. 2019. p. 20–2.
  • [51] Reid JD, Boesch DA, Bielenberg RW. Detailed tire modeling for crash applications. Int J Crashworthiness. 2007;12:521–9. https ://doi.org/10.1080/13588 26070 14838 13.
  • [52] Baranowski P, Malachowski J, Janiszewski J, Wekezer J. Detailed tyre FE modelling with multistage validation for dynamic analysis. Mater Des. 2016;96:68–79. https ://doi.org/10.1016/j.matde s.2016.02.029.
  • [53] Gutowski M, Palta E, Fang H. Crash analysis and evaluation of vehicular impacts on W-beam guardrails placed behind curbs using finite element simulations. Adv Eng Softw. 2017;114:85–97.
  • [54] Avallone EA, Baumeister III T, Sadegh AM. Marks’ standard handbook for mechanical engineers. 2006.
  • [55] Plaxico CA, Kennedy JC, Miele CR. Development of an NCHRP Report 350 TL-3 New Jersey shape 50-inch portable concrete barrier. 2006.
  • [56] Mongiardini M, Ray MH. Acceptance criteria for validation metrics in roadside safety based on repeated full-scale crash tests. Int J Reliab Saf. 2010;4:69–88.
  • [57] Mongiardini M, Ray MMH, Anghileri M, Milano P. Development of a software for the comparison of curves during the verification and validation of numerical models. In: 7th European LS-DYNA. 2009. http://www.dynam ore.de/de/downl oad/paper s/paper s/konferenz0 9/paper s-depr/K-I-03.pdf.
  • [58] Bruski D, Burzyński S, Chróścielewski J, Jamroz K, Pachocki Ł, Witkowski W, Wilde K. Experimental and numerical analysis of the modified TB32 crash tests of the cable barrier system. Eng Fail Anal. 2019;104:227–46. https ://doi.org/10.1016/j.engfa ilana l.2019.05.023.
  • [59] Wilde K, Bruski D, Budzyński M, Burzyński S, Chróścielewski J, Jamroz K, Pachocki Ł, Witkowski W. Numerical analysis of TB32 crash tests for 4-cable guardrail barrier system installed on the horizontal convex curves of road (in press). Simul: Int J Nonlinear Sci Numer; 2018.
  • [60] European Standard EN 1317-4:2001. Road restraint systems – Part 4: performance classes, impact test acceptance criteria and test methods for terminals and transitions of safety barriers, 2001.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7661908-f893-4313-879c-a1857c3e628e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.