PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Artificial intelligence-powered pulse sequences in nuclear magnetic resonance and magnetic resonance imaging: historical trends, current innovations and perspectives

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review article explores the historical background and recent advances in the application of artificial intelligence (AI) in the development of radiofrequency pulses and pulse sequences in nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI). The introduction of AI into this field, which traces back to the late 1970s, has recently witnessed remarkable progress, leading to the design of specialized frameworks and software solutions such as DeepRF, MRzero, and GENETICS-AI. Through an analysis of literature and case studies, this review tracks the transformation of AI-driven pulse design from initial proof-of-concept studies to comprehensive scientific programs, shedding light on the potential implications for the broader NMR and MRI communities. The fusion of artificial intelligence and magnetic resonance pulse design stands as a promising frontier in spectroscopy and imaging, offering innovative enhancements in data acquisition, analysis, and interpretation across diverse scientific domains.
Czasopismo
Rocznik
Strony
30--52
Opis fizyczny
Bibliogr. 56 poz., 1 il. kolor., rys., wykr.
Twórcy
  • University of Lodz, Faculty of Chemistry, Laboratory of Molecular Spectroscopy, Tamka 12, 91-403 Łódź, Poland
Bibliografia
  • [1] Cobas, C.; NMR Signal Processing, Prediction, and Structure Verification with Machine Learning Techniques. Magn. Reson. Chem. 2020, 58, 512-519. DOI: 10.1002/MRC.4989
  • [2] Wei, W.; Liao, Y.; Wang, Y.; Wang, S.; Du, W.; Lu, H.; Kong, B.; Yang, H.; Zhang, Z.; Deep Learning-Based Method for Compound Identification in NMR Spectra of Mixtures. Molecules. 2022, 27, 3653. DOI: 10.3390/MOLECULES27123653/S1
  • [3] Kuhn, S.; Applications of Machine Learning and Artificial Intelligence in NMR. Magn. Reson. Chem. 2022, 60, 1019-1020. DOI: 10.1002/MRC.5310
  • [4] Chen, D.; Wang, Z.; Guo, D.; Orekhov, V.; Qu, X.; Review and Prospect: Deep Learning in Nuclear Magnetic Resonance Spectroscopy. Chem. - A Eur. J. 2020, 26, 10391-10401. DOI: 10.1002/CHEM.202000246
  • [5] Cortés, I.; Cuadrado, C.; Hernández Daranas, A.; Sarotti, A. M.; Machine Learning in Computational NMR-Aided Structural Elucidation. Front. Nat. Prod. 2023, 2, 1122426. DOI: 10.3389/FNTPR.2023.1122426
  • [6] Nazarski, R. B.; Summary of DFT Calculations Coupled with Current Statistical and/or Artificial Neural Network (ANN) Methods to Assist Experimental NMR Data in Identifying Diastereomeric Structures. Tetrahedron Lett. Elsevier, 11, 2021. DOI: 10.1016/j.tetlet.2020.152548
  • [7] Zhang, H.; Alexander, D. C.; Shen, D.; Yap, P. T.; Special Issue on Machine Learning and Deep Learning in Magnetic Resonance. NMR Biomed. 2022, 35, e4713. DOI: 10.1002/NBM.4713
  • [8] Shimron, E.; Perlman, O.; AI in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow. Bioengineering 2023, 10, 492. DOI: 10.3390/BIOENGINEERING10040492
  • [9] McCarthy, J.; Minsky, M. L.; Rochester, N.; Shannon, C. E.; A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Mag. 2006, 27, 12-12. DOI: 10.1609/AIMAG.V27I4.1904
  • [10] Andresen, S. L.; John McCarthy: Father of Al. IEEE Intell. Syst. 2002, 17, 84-85. DOI: 10.1109/MIS.2002.1039837
  • [11] Mccarthy, J.; What Is Artificial Intelligence?; Stanford, 2007. http://www-formal.stanford.edu/jmc/ (accessed 2024-01-20)
  • [12] Nilsson, N. J.; Artificial Intelligence Prepares for 2001. AI Mag. 1983, 4, 7-7. DOI: 10.1609/AIMAG.V4I4.411
  • [13] Russell, S.; Norvig, P.; Artificial Intelligence : A Modern Approach; Pearson, 2020.
  • [14] Prados Carrasco, F.; Enginyeria del programari, I.; An Ontology for the NMR Pulse Sequence Concept (Bachelor Thesis), 2021. https://openaccess.uoc.edu/handle/10609/126306 (accessed 2024-02-19)
  • [15] Yang, X.-S.; Genetic Algorithms. In Nature-Inspired Optimization Algorithms; Academic Press, 2021; 91-100. DOI: 10.1016/B978-0-12-821986-7.00013-5
  • [16] Freeman, R.; Xili, W.; Design of Magnetic Resonance Experiments by Genetic Evolution. J. Magn. Reson. (1969). 1987, 75, 184-189. DOI: 10.1016/0022-2364(87)90331-3
  • [17] Plateau, P.; Guéron, M.; Exchangeable Proton NMR without Base-Line Distortion, Using New Strong-Pulse Sequences. J. Am. Chem. Soc. 1982, 104, 7310-7311. DOI: 10.1021/JA00389A067/ASSET/JA00389A067.FP.PNG_V03
  • [18] Morris, G. A.; Freeman, R.; Selective Excitation in Fourier Transform Nuclear Magnetic Resonance. J. Magn. Reson. (1969). 1978, 29, 433-462. DOI:10.1016/0022-2364(78)90003-3
  • [19] Wu, X. L.; Freeman, R.; Darwin’s Ideas Applied to Magnetic Resonance. The Marriage Broker. J. Magn. Reson. (1969). 1989, 85, 414-420. DOI: 10.1016/0022-2364(89)90155-8
  • [20] Wu, X. ‐L; Xu, P.; Freeman, R.; Delayed-Focus Pulses for Magnetic Resonance Imaging: An Evolutionary Approach. Magn. Reson. Med. 1991, 20, 165-170. DOI: 10.1002/MRM.1910200118
  • [21] Lunati, E.; Cofrancesco, P.; Villa, M.; Marzola, P.; Osculati, F.; Evolution Strategy Optimization for Selective Pulses in NMR. J. Magn. Reson. 1998, 134, 223-235. DOI: 10.1006/JMRE.1998.1510
  • [22] Gray, H. F.; Maxwell, R. J.; Genetic Programming Optimisation of Nuclear Magnetic Resonance Pulse Shapes. In In: Brause, R.W., Hanisch, E. (eds) Medical Data Analysis. ISMDA 2000. Lecture Notes in Computer Science, vol 1933. Springer, Berlin, Heidelberg; Brause, R. W., Hanisch, E., Eds.; 2002
  • [23] Mäkelä, A. V.; Kilpeläinen, I.; Heikkinen, S.; Quantitative 13C NMR Spectroscopy Using Refocused Constant-Time INEPT, Q-INEPT-CT. J. Magn. Reson. 2010, 204, 124-130. DOI: 10.1016/J.JMR.2010.02.015
  • [24] Manu, V. S.; Kumar, A.; Fast and Accurate Quantification Using Genetic Algorithm Optimized 1H-13C Refocused Constant-Time INEPT. J. Magn. Reson. 2013, 234, 106-111. DOI: 10.1016/J.JMR.2013.06.013
  • [25] Cummins, H. K.; Jones, J. A.; Resonance Offset Tailored Composite Pulses. J. Magn. Reson. 2001, 148, 338-342. DOI: 10.1006/JMRE.2000.2247
  • [26] Manu, V. S.; Veglia, G.; Genetic Algorithm Optimized Triply Compensated Pulses in NMR Spectroscopy. J. Magn. Reson. 2015, 260, 136-143. DOI: 10.1016/j.jmr.2015.09.010
  • [27] Xia, Y.; Rossi, P.; Subrahmanian, M. V.; Huang, C.; Saleh, T.; Olivieri, C.; Kalodimos, C. G.; Veglia, G.; Enhancing the Sensitivity of Multidimensional NMR Experiments by Using Triply-Compensated π Pulses. J. Biomol. NMR 2017, 69, 237-243. DOI: 10.1007/s10858-017-0153-2
  • [28] Manu, V. S.; Veglia, G.; Optimization of Identity Operation in NMR Spectroscopy via Genetic Algorithm: Application to the TEDOR Experiment. J. Magn. Reson. 2016, 273, 40-46. DOI: 10.1016/j.jmr.2016.09.021
  • [29] Subrahmanian, M. V.; Dregni, A. J.; Veglia, G.; Optimal Design of Offset-Specific Radio Frequency Pulses for Solution and Solid-State NMR Using a Genetic Algorithm. In Mod. Magn. Reson.; Springer International Publishing, 2018; 605-615. DOI: 10.1007/978-3-319-28388-3_71
  • [30] Liu, M.; Mao, X. A.; Ye, C.; Huang, H.; Nicholson, J. K.; Lindon, J. C.; Improved WATERGATE Pulse Sequences for Solvent Suppression in NMR Spectroscopy. J. Magn. Reson. 1998, 132, 125-129. DOI: 10.1006/JMRE.1998.1405
  • [31] Piotto, M.; Saudek, V.; Sklenář, V.; Gradient-Tailored Excitation for Single-Quantum NMR Spectroscopy of Aqueous Solutions. J. Biomol. NMR, 1992, 2, 661-665. DOI: 10.1007/BF02192855/METRICS
  • [32] Sodano, P.; Delepierre, M.; Binomial Frequency Response to Non-Binomial Pulse Sequences for Efficient Water Suppression. J. Biomol. NMR, 1993, 3, 471-477. DOI: 10.1007/BF00176012/METRICS
  • [33] Brenner, T.; Chen, J.; Stait-Gardner, T.; Zheng, G.; Matsukawa, S.; Price, W. S.; Jump-and-Return Sandwiches: A New Family of Binomial-like Selective Inversion Sequences with Improved Performance. J. Magn. Reson. 2018, 288, 100-108. DOI: 10.1016/J.JMR.2018.01.008
  • [34] Rethinam, M. J.; Javali, A. K.; Behrman, E. C.; Steck, J. E.; Skinner, S. R.; A Genetic Algorithm for Finding Pulse Sequences for NMR Quantum Computing; 2004. https://arxiv.org/abs/quant-ph/0404170v1 (accessed 2024-02-19)
  • [35] Ajoy, A.; Kumar, A.; Hierarchical Genetic Algorithm Approach to Determine Pulse Sequences in NMR; 2009. https://arxiv.org/abs/0911.5465v2 (accessed 2024-01-23)
  • [36] Manu, V. S.; Kumar, A.; Singlet-State Creation and Universal Quantum Computation in NMR Using a Genetic Algorithm. Phys. Rev. A - At. Mol. Opt. Phys. 2012, 86. DOI: 10.1103/PhysRevA.86.022324
  • [37] Lunati, E.; Cofrancesco, P.; Villa, M.; Marzola, P.; Sbarbati, A.; Evolution Strategy Optimization for Adiabatic Pulses in MRI. J. Magn. Reson. 1999, 138, 48-53. DOI: 10.1006/JMRE.1998.1677
  • [38] Pang, Y.; Shen, G. X.; Improving Excitation and Inversion Accuracy by Optimized RF Pulse Using Genetic Algorithm. J. Magn. Reson. 2007, 186, 86-93. DOI:10.1016/J.JMR.2007.01.016Z
  • [39] Yoshimaru, E. S.; Randtke, E. A.; Pagel, M. D.; Cárdenas-Rodríguez, J.; Design and Optimization of Pulsed Chemical Exchange Saturation Transfer MRI Using a Multiobjective Genetic Algorithm. J. Magn. Reson. 2016, 263, 184-192. DOI: 10.1016/J.JMR.2015.11.006
  • [40] Somai, V.; Kreis, F.; Gaunt, A.; Tsyben, A.; Chia, M. L.; Hesse, F.; Wright, A. J.; Brindle, K. M.; Genetic Algorithm-Based Optimization of Pulse Sequences. Magn. Reson. Med. 2022, 87, 2130-2144. DOI: 10.1002/mrm.29110
  • [41] Yang, Z. R.; Yang, Z.; Artificial Neural Networks. In Comprehensive Biomedical Physics; Elsevier, 2014, 6, 1-17. DOI: 10.1016/B978-0-444-53632-7.01101-1
  • [42] Gezelter, J. D.; Freeman, R.; Use of Neural Networks to Design Shaped Radiofrequency Pulses. J. Magn. Reson. (1969). 1990, 90, 397-404. DOI: 10.1016/0022-2364(90)90149-4
  • [43] Vinding, M. S.; Skyum, B.; Sangill, R.; Lund, T. E.; Ultrafast (Milliseconds), Multidimensional RF Pulse Design with Deep Learning. Magn. Reson. Med. 2019, 82, 586-599. DOI: 10.1002/mrm.27740
  • [44] Vinding, M. S.; Aigner, C. S.; Schmitter, S.; Lund, T. E.; DeepControl: 2DRF Pulses Facilitating B1+ Inhomogeneity and B0 off-Resonance Compensation in Vivo at 7 T. Magn. Reson. Med. 2021, 85, 3308-3317. DOI: 10.1002/mrm.28667
  • [45] Vinding, M. S.; Lund, T. E.; Clipped DeepControl: Deep Neural Network Two-Dimensional Pulse Design with an Amplitude Constraint Layer. Artif. Intell. Med. 2023, 135. DOI: 10.1016/j.artmed.2022.102460
  • [46] Pulsed Power Measurements. https://boonton.com/resource-library/articles/artmid/1867/articleid/2281/pulsed-power-measurements (accessed 2024-02-04)
  • [47] Shin, D.; Ji, S.; Lee, D.; Lee, J.; Oh, S. H.; Lee, J.; Deep Reinforcement Learning Designed Shinnar-Le Roux RF Pulse Using Root-Flipping: DeepRFSLR. IEEE Trans. Med. Imaging 2020, 39, 4391-4400. DOI: 10.1109/TMI.2020.3018508
  • [48] Shin, D.; Kim, Y.; Oh, C.; An, H.; Park, J.; Kim, J.; Lee, J.; Deep Reinforcement Learning-Designed Radiofrequency Waveform in MRI. Nat. Mach. Intell. 2021, 3, 985-994. DOI: 10.1038/s42256-021-00411-1
  • [49] Loktyushin, A.; Herz, K.; Dang, N.; Glang, F.; Deshmane, A.; Weinmüller, S.; Doerfler, A.; Schölkopf, B.; Scheffler, K.; Zaiss, M.; MRzero - Automated Discovery of MRI Sequences Using Supervised Learning. Magn. Reson. Med. 2021, 86, 709-724. DOI: 10.1002/mrm.28727
  • [50] Veglia, G.; Veliparambil Subrahmanian, M.; System and Method for Producing Radiofrequency Pulses in Magnetic Resonance Using an Optimal Phase Surface. US11221384B2, 2020
  • [51] Manu, V. S.; Olivieri, C.; Pavuluri, K. D.; Veglia, G.; Design and Applications of Water Irradiation Devoid RF Pulses for Ultra-High Field Biomolecular NMR Spectroscopy. Phys. Chem. 2022, 24, 18477-18481. DOI: 10.1039/d2cp01744j
  • [52] Manu, V. S.; Olivieri, C.; Veglia, G.; Water Irradiation Devoid Pulses Enhance the Sensitivity of 1H,1H Nuclear Overhauser Effects. J. Biomol. NMR. 2023, 77, 1-14. DOI: 10.1007/s10858-022-00407-y
  • [53] Subrahmanian, M. V.; Pavuluri, K. D.; Olivieri, C.; Veglia, G.; High-Fidelity Control of Spin Ensemble Dynamics via Artificial Intelligence: From Quantum Computing to NMR Spectroscopy and Imaging. PNAS Nexus. 2022, 1. DOI: 10.1093/pnasnexus/pgac133
  • [54] Manu, V. S.; Olivieri, C.; Veglia, G.; AI-Designed NMR Spectroscopy RF Pulses for Fast Acquisition at High and Ultra-High Magnetic Fields. Nature Comm. 2023, 14. DOI: 10.1038/s41467-023-39581-4
  • [55] Subrahmanian, M. V.; Veglia, G.; AI-Designed RF Pulses Enable Fast Pulsing Heteronuclear Multiple Quantum Coherence NMR Experiment at High and Ultra-High Magnetic Fields. Chem. Commun. 2024, 60, 2240-2243. DOI: 10.1039/d3cc05370a
  • [56] Liang, S.; Beaton, D.; Arnott, S. R.; Gee, T.; Zamyadi, M.; Bartha, R.; Symons, S.; MacQueen, G. M.; Hassel, S.; Lerch, J. P.; Anagnostou, E.; Lam, R. W.; Frey, B. N.; Milev, R.; Müller, D. J.; Kennedy, S. H.; Scott, C. J. M.; Strother, S. C.; Magnetic Resonance Imaging Sequence Identification Using a Metadata Learning Approach. Front. Neuroinform. 2021, 15, 622951. DOI: 10.3389/FNINF.2021.622951/BIBTEX
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e761a1e9-92cc-4437-9753-52cda0fc7e04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.