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 Abstract: This review article explores the historical background and recent 

advances in the application of artificial intelligence (AI) in the 

development of radiofrequency pulses and pulse sequences in 
nuclear magnetic resonance spectroscopy (NMR) and imaging (MRI). 

The introduction of AI into this field, which traces back to the late 
1970s, has recently witnessed remarkable progress, leading to the 
design of specialized frameworks and software solutions such as 

DeepRF, MRzero, and GENETICS-AI. Through an analysis of 
literature and case studies, this review tracks the transformation of 
AI-driven pulse design from initial proof-of-concept studies to 

comprehensive scientific programs, shedding light on the potential 
implications for the broader NMR and MRI communities. The fusion 

of artificial intelligence and magnetic resonance pulse design stands 
as a promising frontier in spectroscopy and imaging, offering 
innovative enhancements in data acquisition, analysis, and 

interpretation across diverse scientific domains. 
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Introduction 

In recent times, rapid advancement of artificial intelligence (AI) has become 

increasingly evident, revolutionizing various domains such us engineering, science, and daily 

routines. Notably, numerous review articles have surfaced discussing AI applications in 

magnetic resonance, particularly focusing on data processing, structure elucidation through 

the nuclear magnetic resonance spectroscopy (NMR) spectra, and magnetic resonance 

imaging (MRI) pattern recognition [1–6]. Recently, special issues of the NMR in Biomedicine 

[7] and Bioengineering [8] journals were specifically devoted to AI methods applied to 

magnetic resonance techniques.  Despite the insights provided by these articles, the topic of 

AI-assisted generation of shaped pulses or pulse sequences remains largely unexplored in 

the existing reviews. 

AI is a broad term first proposed in 1955 by John McCarthy [9,10]. According to 

McCarthy AI is, in general, ‘the science and engineering of making intelligent machines, 

especially intelligent computer programs’ [11]. This phenomenological, umbrella definition 

encompasses a wide variety of computational techniques, including Machine Learning (ML). 

ML is designed especially to find patterns and abstract knowledge from a limited number of 

examples (or trials) and apply them to new problems. AI allows for solving problems too 

complex for human mind to fully comprehend. Most of the AI techniques rely on stochastic 

optimization methods over vast parameter space which makes them superior to deterministic 

optimization algorithms. There is, however, no precise direction or paradigm in AI research. 

To cite Nils Nilson, one of the founders of the AI science, ‘there is wide disagreement in the 

field about what AI is all about’ [12]. For readers seeking a comprehensive exploration of the 

subject, the textbook by Russell and Norvig serves as an invaluable resource [13]. 

In this review I will focus on two prominent AI subfields that have been used in 

radiofrequency (RF) pulse sequence generation for several decades and in the last few 

years gained the strongest interest in the field, namely Evolutionary Algorithms (EAs) and 

Artificial Neural Networks (ANNs). Both belong to Machine Learning (ML) techniques. 

To introduce the reader to nuclear magnetic resonance let us first consider an object 

that contains atomic nuclei of non-zero spin placed in a static magnetic field 𝐵0. This external 

magnetic field causes a small magnetization of the object that arises from the separation of 
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the energy states of the magnetically active nuclei. In an equilibrium, non-disturbed state, this 

secondary magnetization remains parallel to the 𝐵0 (further referred to as the z-axis, 

following standard convention). Subsequently, a short pulse of electromagnetic field denoted 

as 𝐵1
+ within a certain RF range is generated to perturb the equilibrium state, temporarily 

altering the orientation of the magnetization. The spontaneous return to the thermodynamic 

equilibrium includes a decaying precession of the magnetization at the nucleus-specific 

frequency (the Larmor frequency), giving rise to the electromagnetic field 𝐵1
−. The effect of 

generation of the Larmor Frequency is called nuclear magnetic resonance. The 𝐵1
− field 

induces an electric current alternating at the same frequency in the coils surrounding the 

object. The registered electric signal in the form of Free Induced Decay (FID) corresponds to 

the electromagnetic response of the spin population. When the frequency spectrum of the 

FID of a chemical sample is of interest, it pertains to Nuclear Magnetic Resonance 

Spectroscopy (NMR). Alternatively, when the spatial configuration or density map of the spin 

population within an object is assayed, the technique is called Magnetic Resonance Imaging 

(MRI). By replacing the single excitation pulse by a sequence of variously modulated pulses 

accompanied by the 𝐵0 field alteration (magnetic field gradients) additional information about 

the spin system could be encoded in the FID and subsequently recovered by the data 

processing. Development of new pulse sequences that encode such additional information 

constitutes an essential field of NMR and MRI research [14]. 

With increasing complexity of the spin system under consideration or amount and 

type of information to be extracted the development of dedicated pulses or pulse sequence 

might be challenging due to the multidimensionality of the parameter space under 

consideration. This is where the new AI approaches find their niche. As said before, most of 

the AI models perform stochastic optimization over large parameter sets. Contrary to typical 

analytical approach, where a crucial step is to understand how to solve the problem, the AI 

methodology is rather to find which model will solve the problem on its own. Such paradigm 

shift has proved to be successful in many areas of magnetic resonance research, as will be 

shown throughout this review. 

To visualize the ongoing growth of the interest of the scientific community in the AI-

supported RF pulse design the number of articles on the topic published per year as well as 

the cumulative article count over the time were presented on Chart 1. Approximately 

exponential growth is clearly visible with a significant shift from the artificial evolution 

approach towards the artificial neural networks. Additionally, the timeline of the most 

important articles is shown on Fig. 1. 
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Chart 1 The number of original research articles on AI-supported design and optimization of RF pulses 

and pulse sequences for MRI and NMR applications. Bars represent the number of articles per year, 
solid lines the cumulative count over the years, dotted grey line is an exponential fit to the total count 
data. The green and red colors correspond to the main AI technique used in each article, GA or ANN 

respectively. The articles on GENETICS-AI were included in the ANN article count as the software 
heavily depends on the deep neural networks. 

Evolutionary Algorithms 

Overview the Evolutionary Algorithm concept 

Evolutionary algorithms are computer optimization methods inspired by the ideas of 

Darwinian evolution model. Let us consider an abstract multidimensional problem where an 

optimal yet unknown solution is expected to exist. A set of candidate solutions that are 

arbitrarily far from the anticipated optimal one are then generated. By solutions, we mean a 

mathematical structure (e. g. a set of numbers, alphanumeric string, matrix, tensor) that 

encompasses a set of parameters or values that correspond to the multidimensional 

problem. During the evolutionary search pairs of the candidate solutions are mated and the 

offspring is generated. Each offspring solution inherits some properties of each parent. 

Moreover, random mutations are introduced to the parameters of the offspring to diversify 

the search space. Subsequently, a selection procedure is employed to determine which 

members of the new generation meet the predefined fitness criteria. The best individuals are 

retained for the next round of the optimization process, and this cycle continues until the 

desired solution criteria are met or the limit of generations or computation time is reached 

(Fig. 2) [13,15]. Genetic algorithms (GAs) are subset of evolutionary algorithms in which the 

parameters of the individual solutions are encoded into a one-dimensional chain of genes 

typically in the form of numeric of alphanumeric string [13]. 
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Fig. 1. The timeline summarizing most important articles cited in this review. The black or blue 

connector colors correspond to the main AI technique used in each article, GA or ANN respectively. 
The articles on GENETICS-AI were included in the ANN article count as the software heavily depends 
on the deep neural networks. 
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Fig. 2. A schematic description of an example pulse sequence optimization using GA: a) starting point 
sequences are encoded to numbers using some chosen algorithm (in this example the pulse durations 

and amplitudes are stored in array); b) arrays are ‘mated’ to produce offspring with mixed genes of 
the parents, additionally mutations are applied to the offspring genes to broaden the searched space; 
c) the newly generated arrays are decoded to the pulse sequences which are subsequently tested for 

performance (either by simulation of by physical spectrum registration); d) the best individuals are 
selected for the next iteration and the cycle repeats. 

 

Evolutionary Algorithms in NMR pulse sequence development  

The interplay between artificial intelligence and magnetic resonance traces its roots 

back to the 1987 seminal paper by Freeman and Wu [16]. The authors laid the theoretical 

groundwork for applying Darwin’s ideas of evolution to the problem of pulse sequence 

optimization. They began by considering a general case of a sequence comprising several 

radiofrequency pulses interspersed with delays. The durations of these delays and pulses, as 

well as of the pulse phases, were conceptualized as genes. The pulse sequences were 

allowed to evolve in the sense that from a given sequence a set of offspring was generated 

by introducing small distortions to the genes (mutations). Subsequently, the excitation profile 

of each new sequence was computed using Bloch equations. The spectrometer operator was 

then allowed to choose, according to some pre-defined principles, one sequence to become 

a new parent. A proof-of-concept search for a solvent peak suppression sequence was 

conducted. Remarkably, within 11 generations of Darwinian evolution the well-known 

binomial signal suppression sequence (1:3:3:1, [17] emerged [16] In subsequent works, the 
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authors applied the same principles to the optimization of the pulse widths of the DANTE 

[18] sequence [19] and self-focusing selective pulses with steady excitation profiles spanning 

over at least 3 kHz (coined as FLAT pulses, Fig. 3) [20]. 

 

Fig. 3. An example FLAT pulse of Wu and Freeman generated by genetic algorithm. It results in high-
fidelity, over 3 kHz excitation profile. The chart was generated based on the Fourier series coefficients 
given in [20]. 

In 1998 the topic was pushed forward by Lunati et al., who employed a stochastic, 

evolution-inspired optimization method to design selective RF pulses. They decided to avoid 

the black-box approach in which the shaped pulse is encoded as a series of points over the 

time-phase-amplitude space and the search is performed blindly, without any care about the 

real hardware limitations. Instead, the pulse shape (amplitude and phase) was represented 

as time-dependent coordinates on XY plane and defined by the following Fourier series: 

𝑤𝑥(𝜏) = 2𝜋 {∑[𝐴𝑛 cos(2𝜋𝑛𝜏) + 𝐵𝑛 sin(𝜋𝑛𝜏)]

𝑁𝑝

𝑛=0

} 

𝑤𝑦(𝜏) = 2𝜋 {∑[𝐶𝑛 cos(2𝜋𝑛𝜏) + 𝐷𝑛 sin(𝜋𝑛𝜏)]

𝑁𝑝

𝑛=0

} 

where 𝑤𝑥 and 𝑤𝑦 are time (𝜏) dependent pulse amplitude on x and y axes. The sets of 𝐴𝑛, 

𝐵𝑛, 𝐶𝑛 and 𝐷𝑛 Fourier coefficients form a search space for in silico evolutionary search. The 

use of Fourier series guarantees more physical, smooth and continuous pulse profile. For 

each candidate pulse shape, the excitation profile was computed using Bloch equations and 

the fitness was estimated. This led to the discovery of several new low-power, band-

selective pulses with excitation profiles similar to the BURP pulse family [21]. 
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Fig. 4. Comparison of the Fourier series-based and black-box approaches to the pulse shape 

optimization. In the Fourier series approach the shaped pulse (a) is approximated by a Fourier series 
(b). The Fourier coefficients (c) are then subject to evolutionary optimization. In the black-box 
approach the same shaped pulse (d) is discretized (e). This leads to a set of amplitude/phase 

parameters (f) that are used for the optimization step. 

 

Contrary, in 2000 Gray and Maxwell encoded the pulse shape directly as a time-

dependent list of phase-amplitude pairs. Theoretically, such notation could encompass full 

sequence of pulses within a formal shaped pulse. The genetic algorithm optimization using 

50 agents evolving over 50 generations was run on a real NMR spectrometer instead of 

theoretical calculation based on Bloch sphere. During each evaluation of the fitness function 

a physical spectrum of a sample containing 255 mM sodium trimethylsilyl 2,2,3,3-

tetradeutero-propionate (TSP) in 1:2 water/DMSO was acquired. Three different tasks for 

the optimization were tested. The first aimed to maximize the DMSO/water signal ratio, 

effectively suppressing the water signal while preserving the DMSO resonance. The second 

experiment sought to maximize the ratio of TSP to water signals. Finally, the third 

experiment aimed to maximize the TSP signal relative to the sum of the water and DMSO 

signals. Although this evolutionary approach yielded pulse sequences with satisfactory single 

signal suppression properties, the simultaneous suppression of both H2O and DMSO peaks 

was relatively poor [22].  

In 2010 Mäkelä et al. proposed a Q-INEPT-CT experiment for quantitative 13C 

spectroscopy, utilizing the INEPT polarization transfer to increase the sensitivity. The 

sequence was optimized to equalize the 13C signal of CH, CH2 and CH3 groups [23]. In 2013 

Manu and Kumar further subjected the experiment to global optimization using GA. Three 

fitness functions were tested that focused on the shortest possible experimental time and 

preservation of the quantitative information in the resulting spectrum regardless of 1JC-H 

coupling constants. These functions varied in their treatment of the polarization transfer 
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strengths of CH, CH2 and CH3 groups. In the first case (Case A), the GA was constrained to 

ensure possibly identical responses for all carbons. In the second case (B) the responses of 

CH, CH2 and CH3 were optimized separately. In the third case (C) only the polarization 

transfer of the CH2 and CH3 groups was considered. Finally, a family of sequences, called 

GAQIC sequences, were obtained. The sequence generated in the C case resulted in 

quantitative spectrum comparable to the Q-INEPT-CT with two-fold registration time 

reduction. However, they found that the best results are obtained when the CH, CH2 and CH3 

are treated separately. Therefore, while the spectrum contained precise quantitative 

information, simultaneous quantification of differently substituted carbon atoms was not 

feasible [24]. 

 NMR spectra obtained using pulse sequences relying on hard π and π /2 pulses often 

suffer from field inhomogeneity, poor pulse calibration, and offsets, particularly when a 

broad excitation width is required. In an effort to address these challenges, Manu and Veglia 

conducted a genetic algorithm (GA) search for general rotor composite pulses designed to 

inherently compensate for these effects. A general rotor refers to a pulse or pulse sequence 

that induces a rotation of a spin system in a consistent manner, irrespective of its initial state 

[25]. Shaped pulses with constant amplitude and phase variability, composed of 200 points 

underwent an artificial evolution. The selection was based on the simulated performance of 

the candidate solutions. After 104 generations the family of so-called triply compensated 

pulses for π and π/2 rotations was discovered. They exhibited significantly higher fidelity 

than hard pulses. The effectiveness of these pulses was demonstrated by applying them to 

solid-state magic angle spinning (MAS) spectra of ubiquitin, showcasing a nearly uniform 

response over a 40-60 kHz offset range [26]. 

The triply compensated π pulses were further exploited by Xia et al. (from the same 

team) to significantly enhance the intensities of 2D 1H-15N and 1H-13C HSQC, 3D TROSY-

HNCA and 13C-edited NOESY-HSQC experiments. The most notable enhancement was 

observed for the triply compensated version of 1H-13C HSQC (compared to the standard 

Bruker hsqcetgpsisp2.2 sequence) where the relative enhancement of the aromatic groups 

signals was up to 240% [27]. 

More so than for π and π/2 pulses, real-life imperfections profoundly affect the 

identity operation.  The perfect identity operation refers to any operation that leaves a 

specific spin state unchanged. It is commonly employed for decupling and recoupling certain 

nuclei or refocusing the spin population. Typically, an even number of π pulses is applied to 

the spin system to perform the identity operation. However, on a real physical system, 

experimental imperfections strongly influence its performance, resulting in measurable 
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differences between the initial and final spin state. Manu and Veglia demonstrated that GA 

specifically designed for this task can optimize phase profiles of pulses within a sequence of 

an even number of π pulses to achieve a robust identity operation, making it less susceptible 

to experimental imperfections. These identity operation subsequences were then 

incorporated into the transferred-echo double-resonance (TEDOR) MAS NMR experiment. 

The gain of sensitivity reached up to 28% for a physical sample of 13C, 15N labeled 

microcrystalline ubiquitin [28]. This and other methods for designing optimal RF pulses with 

the aid of GA were briefly summarized by Manu et al. [29]. 

Among the solvent suppression techniques, the important role is played by the 

binomial sequences (which are time-symmetric trains of pulses, whose nutation angles ratios 

reassemble the binomial coefficients: 1:1, 1:2:1, 1:3:3:1... etc.) and ‘Jump and Return’ (JR) 

sequences which utilize identity operation performed on the in-resonance solvent signal 

wrapped around the pulses that set the off-resonance spins perpendicularly to the z axis 

[17]. The excitation profile of such a sequence covers most of the desired spectrum width, 

excluding the unwanted solvent signal. Another classic example is gradient-based 

WATERGATE pulse sequence (Fig. 5) [30,31]. Contrary to presaturation, such approaches do 

not inherently cause removal of the exchangeable protons [32]. In 2018 Brenner et al. 

discovered a new family of combined binomial and JR selective inversion sequences using 

standard Matlab Genetic Algorithm optimization tools. The new jump-and-return sandwich 

(JRS) sequences proved to be of superior selectivity. For example, ten-pulse sequence had 

1.5 narrower solvent inversion profile than classical W5-WATERGATE [33]. 

 

Fig. 5. Schematic excitation profile of W5 WATERGATE (based on original chart from [30]) 

 

Quantum computing on NMR system using GA-designed sequences 

NMR provides a useful physical realization of the concept of quantum computing 

(QC). In NMR QC the spins of particular nuclei serve as qubits of a quantum computer with 

spin interactions facilitating information transfer and processing. The application of pulse 

sequence is equivalent to programming the computer. Finding appropriate pulse sequences 

for a given algorithm or problem to be solved constitutes a challenge in itself. 
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In 2004 Behrman et al. showed that GA could be successfully exploited to generate 

pulse sequences for NMR QC. The sequences generated by GS were shorter and more 

effective than the ones designed by previous authors by solving the underlying equations 

analytically [34]. The problem of generating pulse sequences for NMR quantum computing 

was later attacked by Ajoy and Kumar who developed a special class of hierarchical genetic 

algorithms. The genes were encoded in matrices in such a way that parameters from one 

row have the same hierarchy, meaning they affect the solution in a similar way. Additionally, 

the Darwinian model was combined with another optimizer, further enhancing the fitness of 

the solution. Within 20 minutes of simulation on a standard PC, candidate pulse sequences 

were obtained, with an estimated efficiency approximately 50% higher than those of existing 

sequences [35]. 

Those purely theoretical works were followed by physical realization of universal 

computation in NMR spectrometer using GA-generated pulses. Manu and Kumar used 5-

bromofuroic acid, where the two aromatic protons served as a two-qubit model system. 

Using GA-optimized pulse sequences several quantum operations were performed. First, 

authors showed that single qubit rotations (SQR) (equivalent to selective nuclei excitation) 

are possible with a sequence composed of only nonselective hard pulses. Then the CNOT 

gate was developed as a basis for any kind of universal quantum computing. Finally, a 

creation of Bell state (a state where the two spins are maximally entangled) was achieved 

using a single GA-evolved sequence (compared to standard procedure that requires three 

separate steps) [36]. 

 

Fig. 6. Examples of quantum operations performed on real two-spin system using GA-evolved pulse 

sequences. a) 5-bromofuroic acid, a model two-qubit system, b) schematic representation of 
equilibrium spectrum, c) after single qubit rotation sequence (SQR) centered at –249.5 Hz, d) SQR 
centered at 249.5 Hz, e) after Bell state creation. For original spectra see [36]. 



Scientiae Radices, 3(1), 30-52 (2024) 
 

41 
 

Genetic Algorithms in MRI pulse sequence development 

Magnetic resonance imaging (MRI) shares the physical principles with NMR. Modern 

MRI is a pulsed technique where the pulse shapes and pulse sequences, along with gradient 

control, play the vital role in designing and conducting the experiments. Thus, many of the 

theoretical works concerning the NMR pulse sequences are relevant to MRI researchers and 

vice versa. In this review the MRI section is separated for sake of clarity, not for significant 

physical or theoretical differences. 

The first attempt to use GA-like algorithms for MRI pulse generation dates back to 

the 1999 article of Lunati et al. who discovered a new family of adiabatic, frequency-

selective pulses with aid of simplified evolutionary optimization method [37]. 

In MRI the spatial selective RF pulses are used to excite (or invert) the nuclear spins 

inside a predefined physical area of the scanned body. The pulse and the gradient waveform 

that accompanies it are typically designed using the so-called k-space method in which the 

approximate RF pulse is obtained from the desired spatial excitation profile treated with the 

Fourier Transform (FT). Subsequent adjustments are then applied to remove artifacts in the 

excitation profile that arise from the non-linearity of the Bloch equations and the finite 

approximation of the FT. In the 2007 article, Pang and Shen used the GA for the direct 

generation of shaped pulses. Within 46 generations the GA yielded a π/2 pulse of 

significantly cleaner excitation profile than obtained by the k-space method. Analogously, the 

inversion pulse was developed within 32 generations [38]. 

Chemical exchange saturation transfer (CEST) is a contrasted MRI technique. It 

focuses on proton exchange rate in bulk water and the contrast agent. In a pulsed version of 

the technique the labile protons undergo saturation under the action of a series of short RF 

pulses. Finding the best pulse program for CEST constitutes a multidimensional optimization 

problem. To address it, Yoshimaru et al. proposed in 2016 a new multiobjective GA that 

takes into account the maximum power, average power, single pulse duration, delay 

between the pulses and shape of the pulse. The evolved pulse sequences gave a slightly 

higher CEST effect than the best sequences known to date [39]. 

In 2021, Somai et al. re-discovered the concept of GA-assisted optimization of pulse 

sequences. They used the black-box approach earlier criticized by Lunati et al. [21]. Thus, 

the pulse shape was encoded as series amplitude-phase points over time domain. Even 

though, they have taken the physical limitations of the amplifiers and RF coils into account 

and introduced smoothing step to the phase profile prior physical generation of the RF pulse. 

The verification of the proposed GA-optimization framework was performed with extensive 

experimental research on 7 T MRI system. The intensity of polarization transfer from proton 
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to carbon using GA-modified INEPT sequence reached over 190% when compared to an 

unoptimized INEPT. Proton to nitrogen polarization transfer was as high as 160% more 

effective when optimized vs. unoptimized BINEPT sequences were compared. The 

registration of J-coupling artefact-free images was also demonstrated [40]. 

 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) are artificial structures (usually virtual, although 

physical realizations exist). With ANNs a complex computational task is performed by a set of 

functional elements that execute relatively simple mathematical operations. Those elements 

are arranged in such a way that the results of computations performed by some of them are 

passed to others as the input (Fig. 7). They might be organized in layers, groups or 

subnetworks, depending on the architecture of the network. The use of ANNs lies in the 

scope of the field of machine learning. A plethora of ANN techniques and models have been 

developed. Here we would like to focus on deep learning and reinforcement learning [41]. 

In deep learning, the computational elements are organized in layers. It means that 

some group of the elements performs their calculations simultaneously (in a functional 

sense) and the results of their calculations are altogether passed to another group (another 

layer). While the number and size of the layers vary significantly, depending on the problem 

to be solved, the deep learning architectures typically consist of multiple layers [13]. 

 

 

Fig. 7. Schematic representation of ANN. The input is provided to a series of computing elements. The 
results are subsequently passed through several layers of neurons and finally reach the output layer, 

where the result is returned. The existence and exact number of layers as well as the overall network 
architecture heavily depend on the problem to be solved and the approach taken. 

In comparison to the extensive and established history of using genetic algorithms 

(GA) in pulse and pulse sequence generation, the utilization of artificial neural networks 
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(ANNs) appears to be relatively nascent. Apart from seminal work dating back to 1990 (see 

below), significant advancements in this field have predominantly occurred over the past 

decade. 

The first mention of the use of ANN in the context of RF pulse design dates to the 

1990 work of Gezelter and Freeman. After a brief, then-state-of-the-art description of the 

ANN theory, they showed proof-of-concept generation of a shaped pulse. The so-called 

JANUS pulse was designed to prepare antiphase magnetized multiplet directly from an 

equilibrium magnetization. This was intended to be further used for selective coherence-

transfer experiments (INEPT, COSY) or double-quantum filtration (INADEQUATE) [42]. 

Following this early work, there was a significant gap in research on the topic for 

nearly three decades. In 2018, Vinding et al. reported the application of ANN for ultrafast 

design of multidimensional RF pulses for MRI purposes These pulses are particularly valuable 

in clinical settings, such as localized spectroscopy, where only a precisely defined, three-

dimensional region of the body should be irradiated [43]. Complex irradiation patterns are 

often of limited practical utility due to the complexity and length of time required for 

calculating the necessary pulses. Using ANN, the authors reduced the calculation (or rather 

prediction) time to milliseconds. 

In subsequent work the Vinding’s team developed a convolutional neural network 

prediction of two-dimensional RF pulses. The tool was capable of on-the-fly designing RF 

pulses (within 9 ms) to excite hand-drawn areas, with compensation of subject-specific 𝐵1
+ 

inhomogeneity and d 𝐵0 offset up to 600 Hz at 7 T magnet. The method resulted in a small 

risk of pulse amplitude overshoot in case of π/3 pulses [44]. The pulse overshoot is a 

situation when a pulse amplitude momentarily reaches higher than nominal value (Fig. 8). In 

later investigations, the authors identified a significantly higher risk of amplitude overshoot 

for π/2 pulses. Consequently, the method underwent further development to address this 

issue without compromising its inherent advantages [45]. 

 

Fig. 8. RF pulse overshoot – the pulse amplitude reaches higher then expected value at the begining. 

( scheme based on[46]). 
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Shin et al. used deep reinforcement learning to design multiband RF pulses for MRI. 

Multiband pulses are used to excite several slices at once, speeding up the MRI data 

acquisition. The authors combined the DNN with greedy tree search algorithm (an 

optimization algorithm) to minimize the peak amplitude [47]. 

The ideas behind the use of deep reinforcement learning applied to the RF pulse 

design was further explored by the same authors. Their DeepRF algorithm was shown to be 

able to generate slice-selective excitation and inversion pulses, B1-insensitive volume 

inversion pulses and B1-insensitive selective inversion pulses [48]. 

In 2021 Loktyushin et al. introduced the MRzero framework that generates RF 

sequences for MRI, whose 2D excitation profile reassembled arbitrary image data. No a priori 

knowledge was required for the system to learn how to produce a sequence for a given MRI 

experiment. The neural network supervised learning was governed by the results of 

simulations based on the Bloch equations. The resulting model was then used for 

experiments on a phantom and volunteer’s brain, confirming the ability to excite 2D areas in 

agreement with the provided source images [49]. 

In 2020 Veglia and Manu received a patent for the method for creation of RF pulses 

with triple compensation at a high level of fidelity. The so-called GENErator of Triply 

Compensated pulSes (patented as GENETICS, in later articles referred to as GENETICS-AI) is 

an RF pulse optimizer and generator whose mode of action heavily relies on both the neural 

networks and genetic algorithms. The core library of constant amplitude, variable amplitude 

pulses was generated by an evolutionary algorithm. Subsequently, the ANN fed with that 

data was trained to find optimal pulses for a given problem [50]. 

This software was used for the development of novel binomial sequences – water 

irradiation devoid (WADE) pulses. Their mode of action is to excite as much as possible of 

the offset spectrum while performing the identity operation on the on-resonance frequency. 

The WADE pulses are of constant amplitude and phase π-shifted. In order to experimentally 

verify the usefulness of the WADE pulses they were incorporated into a TROSY-HSQC pulse 

sequence. Such modified WADE-TROSY experiments were found to have up to 70.5% higher 

SNR than standard Bruker trosyetf3gpsi.2 [51]. 

Later it was found that upon incorporation of the WADE pulses into the NOESY 

experiment (based on noesygpph19 from the Bruker library), a higher number of NOE 

crosspeaks was observed, compared to excitation sculpting (ES) NOESY spectrum. Most of 

the additional crosspeaks come from the HN-HN interactions which are invisible in standard 

NOESY due to fast exchange of these protons with water. The average intensity of the 

spectrum increased as well by a factor of about 54% (compared to ES-NOESY) [52]. 
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The GENETICS-AI platform was used in an extensive research project, covering 

quantum computing, NMR and MRI [53]. In the field of QC, a model two-qubit quantum 

computer was prepared from 13CHCl3. High fidelity spin entanglement between the 13C and 

1H nuclei was achieved. For NMR applications the high bandwidth (over 40 kHz at 99.99% 

fidelity) π and π/2 shorter than 300 µs were reported. Extending the pulse duration to 1350 

µs allowed to reach 500 kHz high fidelity bandwidth which is far from possible using 

rectangular pulses. Moreover, the pulses are highly resistant to the instrumental noise and 

pulse miscalibration. On the BB channel the GENETICS-AI-generated pulses outperformed 

any known to date shaped pulses reaching, for example, 750 kHz bandwidth at 1.5 ms pulse 

duration. In the field of MRI, the authors showed GENETICS-AI capability of generating 

pulses for RF inhomogeneity-compensated sin-echo (SE) sequences. These GEN-SE 

sequences were shown to be highly inhomogeneity-insensitive, compared to rectangular 

pulse-based spin-echo sequences, as tested on a phantom [53]. 

 Recently, the usefulness of GENETICS-AI was tested on a high-field 900 MHz 

spectrometer. NMR experiments at high and ultra-high fields are prone to technical 

difficulties due to significantly longer relaxation times and problematic excitation of the high 

bandwidth with hard pulses or even classical shaped pulses. With use of the triply 

compensated pulses developed with aid of GENETICS-AI Manu et al. were able to increase 

sensitivity of re-engineered 1H-15N TROSY-HSQC spectra [54]. GENETICS-AI was also 

employed to enhance overcome the limited irradiation bandwidth, inadequate compensation 

levels and pulse imperfections in SOFAST-HMQC spectra. With the triply compensated pulses 

a new RAPID-HMQC experiment was developed [55].  

In addition to the problem of pulse sequence generation it is worth mentioning that 

the lack of unified naming conventions leads to significant problems with sharing and 

exchanging the data on the web. Several naming proposals of the unification have been 

suggested yet no real standard has emerged to date. To address this problem Liang et al. 

used a supervised machine learning model (a random forest model) to recognize and classify 

a given sequence type. The model raises a flag when the encountered sequence does not 

belong to any earlier known type [56]. 

 

Summary and perspective 

The history of AI-developed magnetic resonance pulses and pulse sequences can be 

traced back to the late 1970s, but until recently, progress has been fragmented, with many 

early works serving as proof-of-concept studies without significant follow-up. However, over 

the past decade, there has been a notable shift, with AI-driven search for RF pulses evolving 
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into a comprehensive scientific endeavor for select research groups. This transition has been 

facilitated by the development of dedicated frameworks and software such as DeepRF, 

MRzero, and GENETICS-AI, which could potentially pave the way for the widespread 

adoption of AI-generated pulses within the NMR and MRI communities.  

The growing refinement and accessibility of AI-developed pulses, coupled with 

software interfaces, hold the promise of integration into routine NMR and MRI experiments. 

This could significantly streamline data acquisition processes, enhance sensitivity and 

resolution, and introduce novel possibilities in experimental design. AI-generated pulses 

could be tailored to specific experimental requirements and sample characteristics. Real-time 

adaptation of pulse sequences through machine learning algorithms may provide researchers 

with unprecedented control and versatility in their experiments, allowing for more intricate 

and specialized investigations. Pushing the boundaries of sensitivity, resolution, and imaging 

speed will be essential for unlocking the full potential of AI-driven pulse design in magnetic 

resonance applications. 

In recent years, a significant shift from the GA to ANN-based methods for AI-

supported pulse sequence generation can be seen. Specifically, deep learning methods seem 

to progress towards rapid and effective generation of RF pulses for space-selective excitation 

in MRI. It can be expected that once those methods reach sufficient stability and 

replicability, they will be incorporated into the standard libraries of MRI experiments. Most 

possibly this will expand the available palette of diagnostic techniques. Thus, it could be 

predicted that at some point the AI-based pulse generation frameworks will be further 

developed not only by academics but also MRI manufacturers. Increase of the spatial 

excitation selectivity or artifact reduction might contribute to enhancing the market 

advantage. 

It is worth to mention that while the advances in the field of NMR are significant and 

of high importance from a scientific and cognitive point of view, they usually touch 

sophisticated, cutting-edge techniques (with the historical exception for solvent-

suppression). Further research should also explore the AI-based optimization of pulse 

sequences for routine spectroscopy. Obviously, not much is to be done to simple 1D 

experiments, however the refinement of 2D or 3D correlation spectra or diffusion 

experiments in terms of the acquisition time, resolution, artifact removal, etc. might strongly 

impact the NMR community. It could be predicted that future releases of the spectrometer 

controlling software of major spectrometer manufacturers will include AI-based tools for 

experiment optimization. 
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In conclusion, the fusion of artificial intelligence and magnetic resonance pulse design 

represents a promising frontier in the field of spectroscopy and imaging. By harnessing the 

power of machine learning algorithms, researchers have the potential to revolutionize data 

acquisition, analysis, and interpretation in NMR and MRI, ultimately advancing our 

understanding of complex biological systems and materials. 
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