Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to evaluate the properties of polymer blends of poly(L-lactide) and poly(L-lactide-co-trimethylene carbonate) 15/85 and to select two compositions to be used to prepare the materials for bone and cartilage tissue engineering. PLLA and PLLATMC as the polymers with significantly different mechanical properties could be used to prepare a wide range of polymer blends. They were investigated by ultimate tensile strength and Young modulus measurements. Considering similar mechanical properties to these types of human tissues PLLA:PLLATMC 80:20 and 30:70 blends have been chosen as appropriate materials for bone and cartilage engineering, respectively. The materials were examined by thermal analysis (thermogravimetry and differential scanning calorimetry), ATR-FTIR spectroscopy and surface analysis (roughness and contact angle measurements). Miscibility of two polymers was discussed. High thermal stability of the blends allow to process them by fused deposition modelling which is one of the most promising methods for the manufacturing of computationally designed scaffolds. Based on the results of thermal analysis at least partial miscibility of PLLA and PLLATMC in the examined blends is indicated. Detailed interpretation of ATR-FTIR spectra let to distinguish the polymers despite their structural similarities. Surface properties of the materials depend on the preparation method and on their form.
Czasopismo
Rocznik
Tom
Strony
8--15
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials and Composites, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Engelberg I., Kohn J.: Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials 12(3) (1991) 292-304.
- [2] Chajra H., Rousseau C.F., Cortial D., Ronziere M.C., Herbage D., Mallein-Gerin F., Freyria A.M.: Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Bio- -Medical Materials and Engineering 18(1) (2008) S33-45.
- [3] Willers C., Chen J., Wood D., Xu J., Zheng M.H.: Autologous chondrocyte implantation with collagen bioscaffold for the treatment of osteochondral defects in rabbits. Tissue Engineering 11(7-8) (2005) 1056-1076.
- [4] Filardo G., Drobnic M., Perdisa F., Kon E., Hribernik M., Marcacci M.: Fibrin glue improves osteochondral scaffold fixation: study on the human cadaveric knee exposed to continuous passive motion. Osteoarthritis Cartilage 22(4) (2014) 557-565.
- [5] Konst Y.E., Benink R.J., Veldstra R., van der Krieke T.J., Helder M.N., van Royen B.J.: Treatment of severe osteochondral defects of the knee by combined autologous bone grafting and autologous chondrocyte implantation using fibrin gel. Knee Surgery, Sports Traumatology, Arthroscopy 20(11) (2012) 2263-2269.
- [6] Han F., Yang X., Zhao J., Zhao Y., Yuan X.: Photocrosslinked layered gelatin-chitosan hydrogel with graded compositions for osteochondral defect repair. Journal of Materials Science: Materials in Medicine 26(4) (2015) 160.
- [7] Malafaya P.B., Pedro A.J., Peterbauer A., Gabriel C., Redl H., Reis R.L.: Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. Journal of Materials Science: Materials in Medicine 16(12) (2005) 1077-1085.
- [8] Diduch D.R., Jordan L.C., Mierisch C.M., Balian G.: Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy 16(6) (2000) 571-577.
- [9] Sukegawa A., Iwasaki N., Kasahara Y., Onodera T., Igarashi T., Minami A.: Repair of rabbit osteochondral defects by an acellular technique with an ultrapurified alginate gel containing stromal cell-derived factor-1. Tissue Engineering Part A 18(9-10) (2012) 934-945.
- [10] Kim S.S., Kang M.S., Lee K.Y., Lee M.J., Wang L., Kim H.J.: Therapeutic Effects of Mesenchymal Stem Cells and Hyaluronic Acid Injection on Osteochondral Defects in Rabbits’ knees. Knee Surgery and Related Research 24(3) (2012) 164-172.
- [11] Tytherleigh-Strong G., Hurtig M., Miniaci A.: Intra-articular hyaluronan following autogenous osteochondral grafting of the knee. Arthroscopy 21(8) (2005) 999-1005.
- [12] Nagura I., Fujioka H., Kokubu T., Makino T., Sumi Y., Kurosaka M.: Repair of osteochondral defects with a new porous synthetic polymer scaffold. Journal of Bone and Joint Surgery 89(2) (2007) 258-264.
- [13] Sherwood J.K., Riley S.L., Palazzolo R., Brown S.C., Monkhouse D.C., Coates M., Griffith L.G., Landeen L.K., Ratcliffe A.: A three-dimensional osteochondral composite scaffold for articular cartilage repair. Biomaterials 23(24) (2002) 4739-4751.
- [14] Xue D., Zheng Q., Zong C., Li Q., Li H., Qian S., Zhang B., Yu L., Pan Z.: Osteochondral repair using porous poly(lactide-co- -glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Journal of Biomedical Materials Research Part A 94(1) (2010) 259-270.
- [15] Isayev A.I.: Encyclopedia of Polymer Blends, vol. 1-5. Wiley- -VCH (2013).
- [16] Utracki L.A.: Polymer Blends Handbook, vol. 1-2. Kluwer Academic Publishers (2002).
- [17] Coleman M.M., Painter P.C., Graf J.F.: Specific Interactions and the Miscibility of Polymer Blends. CRC Press (1995).
- [18] Thomas S., Grohens Y., Jyotishkumar P.: Characterization of Polymer Blends: Miscibility, Morphology and Interfaces. Wiley-VCH (2014).
- [19] Zhang X., Peng X., Zhang S.W.: Synthetic biodegradable medical polymers: Polymer blends. [in:] Zhang X.: Science and Principles of Biodegradable and Bioresorbable Medical Polymers - Materials and Properties. Woodhead Publishing (2016) 217-254.
- [20] Saini P., Arora M., Ravi Kumar M.N.V.: Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews 107 (2016) 47-59.
- [21] Navarro-Baena I., Sessini V., Dominici F., Torre L., Kenny J.M., Peponi L.: Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behaviour. Polymer Degradation and Stability 132 (2016) 97-108.
- [22] Esmaeilzadeh J., Hesaraki S., Hadavi S.M.M., Esfandeh M., Ebrahimzadeh M.H.: Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique. Materials Science and Engineering C 71 (2017) 807-819.
- [23] Thanki P.N., Dellacherie E., Six J.L.: Surface characteristics of PLA and PLGA films. Applied Surface Science 253 (2006) 2758-2764.
- [24] Pandey A., Pandey G.C., Aswath P.B.: Synthesis of polylactic acid-polyglycolic acid blends using microwave radiation. Journal of the Mechanical Behavior of Biomedical Materials 1(3) (2008) 227-233.
- [25] Gui Z., Xu Y., Gao Y., Lu C., Cheng S.: Novel polyethylene glycol-based polyester-toughened polylactide. Materials Letters 71 (2012) 63-65.
- [26] Pluta M., Piorkowska E.: Tough crystalline blends of polylactide with block copolymers of ethylene glycol and propylene glycol. Polymer Testing 46 (2015) 79-87.
- [27] Marquez Y., Franco L., Puiggali J.: Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone. Thermochimica Acta 550 (2012) 65-75.
- [28] Li H., Chang J., Qin Y., Wu Y., Yuan M., Zhang Y.: Poly(lactide- -co-trimethylene carbonate) and Polylactide/Polytrimethylene Carbonate Blown Films. International Journal of Molecular Sciences 15(2) (2014) 2608-2621.
- [29] Qin Y., Yuan M., Li L., Guo S., Yuan M., Li W., Xue J.: Use of polylactic acid/polytrimethylene carbonate blends membrane to prevent postoperative adhesions. Journal of Biomedical Materials Research Part B: Applied Biomaterials 79(2) (2006) 312-319.
- [30] Adamus A., Wach R.A., Olejnik A.K., Dzierzawska J., Rosiak J.M.: Degradation of nerve guidance channels based on a poly(L-lactic acid) poly(trimethylene carbonate) biomaterial. Polymer Degradation and Stability 97 (2012) 532-540.
- [31] Yamada H.: Strength of biological materials. The Williams & Wilkins Company (1970) 21, 80.
- [32] Pyda M., Bopp R.C., Wunderlich B.: Heat capacity of poly(lactic acid). Journal of Chemical Thermodynamics 36(9) (2004) 731-742.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7587010-9d30-43cc-bcaa-eeba077c9783