PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and optimisation of exhaust system of light turboprop airplane

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Innovative exhaust system for light turboprop airplane has been developed and optimised. Apart from the basic function of removing exhaust from turboprop engine, the system supports cooling of the engine bay. To do this, the system removes hot air from the engine bay, utilising the ejector-pump effect, where the exhaust stream generates under-pressure, sucking the hot air through the ejector slot and removes the air together with the exhaust gases. The design and optimisation of the exhaust system has been conducted based on computational methods of Computer-Aided Design and Optimisation and Computational Fluid Dynamic. Three-dimensional analysis of flow around the airplane (including effect of propeller) and inside the exhaust system was conducted by application of URANS solver ANSYS FLUENT. Using these software the trajectories of exhaust particles, both inside the exhaust ducts and outside the airplane, have been determined. Parametric model of the designed exhaust system has been developed using the in-house software PARADES. As design parameters the diameter, length and direction of exhaust ducts as well as few parameters describing a shape of the ejector, have been established. The optimisation process aimed at designing of the exhaust system, which removes the exhaust gases possibly far away from the airframe, especially during a descent flight of the airplane. Additional objectives were maximisation of the mass flow rate of hot air sucked through the ejector and minimisation of the drag force generated by external part of the exhaust system. The optimised exhaust system should have also fulfilled requirements of permissible total-pressure losses inside the exhaust ducts. The optimised exhaust system has been implemented on the light turboprop airplane and validated during flight tests.
Twórcy
autor
  • Institute of Aviation Krakowska Avenue 110/114, 02-256 Warsaw, Poland tel.:+48 22 8460011 ext. 532, fax: +48 22 8464411
Bibliografia
  • [1] Ansys Fluent User's Guide, Release 15.0, ANSYS, Inc., http://www.ansys.com, 2013.
  • [2] Ansys Icem Cfd 12.0, User Guide, http://www.ansys.com, 2009.
  • [3] ESPOSA official website: http://www.esposa-project.eu.
  • [4] Frick, C. W., Davis, W. F., Randall, M. R., Mossman, E. A., An Experimental Investigation of NACA Submerged-Duct Entrances, NACA-ACR-5I20, 1945.
  • [5] Rokicki, J., Stalewski, W., Żółtak, J., Multi-Disciplinary Optimisation Of Forward-Swept Wing, in Evolutionary Methods for Design, Optimization and Control, eds.: T. Burczynski and J. Périaux, CIMNE, Barcelona, Spain.
  • [6] Simpson, B., Virtual Blade Model, PDF Presentation, www.fluvius.com.au/ /FLUENT_UGM05/UGM05_Virtual_Blade_Model_VBM.pdf, 2005.
  • [7] Stalewski, W., Parametric Modelling of Aerodynamic Objects – The Key to Successful Design and Optimisation, Proceedings of CEAS, The International Conference of the European Aerospace Societies, Venice, Italy 2011.
  • [8] Stalewski, W., Zoltak, J., Multicriteria Design and Optimisation of Helicopter Fuselage, in Evolutionary and Deterministic Methods for Design, Optimization and Control, eds.: C. Poloni, D. Quagliarella, J. Périaux, N. Gauger, K. Giannakoglou, CIRA, Capua, Italy 2011.
  • [9] Zalewski, W., The impact of propeller on aerodynamics of aircraft, Journal of Konbin, Vol. 1, Air Force Institute of Technology, Warsaw, Poland 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7561964-8d49-4e75-836c-a3fa30c2e968
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.