PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of mineral surface energy using impact of rough topography

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
While some of the studies on the functionalization of surfaces are still in theoretical phase, it is not possible to apply them on natural surfaces which already contain some irregularities. However, progress can be made with a mineral having significant purity, crystal homogeneity, and controllable surface workability for surface treatment operations. Therefore, in this study the effects of roughness on the surface energies of natural stones were investigated by selecting a sample with a distinctive color and metamorphic origin from Mugla, Turkey. First, sample surfaces were prepared using a polishing line with five different abrasives. Three-dimensional surface scans were then performed with ZYGONewView7100 optical-profilometer and ParkSystemAFM to identify the 3D roughness of the surfaces on two different scales (micro and nano) with SPIP-software. The micro average heights (S<sub<a</sub>) of the produced surfaces ranged between 0.423-1.127 µm, nano-scale 0.0806-0.173 µm, while the surface roughness ratio (S<sub>dr</sub>) between 33.7%-40.1%, and nano-scale 5.19%-18.5%. The contact angles of the samples were measured in the presence of pure water, formamide, and diiodomethane using AttensionTheta-tensiometer. Changes in surface energy were followed by Van Oss, Good-Chaudrey approach. Young, Wenzel, Cassie-Baxter contact angle theories were tested within these calculations. It was revealed that the inconsistency in solid phase energy could not be determined at this stage, but it could be regulated by modifying the Cassie-Baxter approach. Furthermore, the percentage of air packs likely to be below the water droplet not foreseen by the previous studies was calculated as 26% up to 35% air gap on the solid/water interface.
Rocznik
Strony
1002--1013
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wz.
Twórcy
  • Afyon Kocatepe University, Engineering Faculty, Mining Engineering Department, Afyonkarahisar, Turkey
  • Afyon Kocatepe University, Engineering Faculty, Mining Engineering Department, Afyonkarahisar, Turkey
Bibliografia
  • AHMED, M. M. (2010). Effect of comminution on particle shape and surface roughness and their relation to flotation process. International Journal of Mineral Processing, 94(3–4), 180–191. https://doi.org/10.1016/j.minpro.2010.02.007.
  • BORMASHENKO, E., STAROV, V. (2013). Impact of surface forces on wetting of hierarchical surfaces and contact angle hysteresis. Colloid and Polymer Science, 291(2), 343–346. https://doi.org/10.1007/s00396-012-2785-9.
  • CASSIE, B. D., CASSIE, A. B. D., BAXTER,S. (1944). Wettability of Porous Surfaces. Transactionsof the Faraday Society, 40(5), 546–551. https://doi.org/10.1039/tf9444000546.
  • CHAU, T. T., BRUCKARD, W. J., KOH, P. T. L., NGUYEN, A. V. (2009). A review of factors that affect contact angle and implications for flotation practice. Advances in Colloid and Interface Science, 150(2), 106–115. https://doi.org/10.1016/j.cis.2009.07.003.
  • CHOI, W., TUTEJA, A., MABRY, J. M., COHEN, R. E., MCKINLEY, G. H. (2009). A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces. Journal of Colloid and Interface Science, 339(1), 208–216. https://doi.org/10.1016/j.jcis.2009.07.027.
  • DITSCHERLEIN, L., FRITZSCHE, J., PEUKER, U. A. (2016). Study of nanobubbles on hydrophilic and hydrophobic alumina surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 497(March), 242–250. https://doi.org/10.1016/j.colsurfa.2016.03.011.
  • DORRER, C., RÜHE, J. (2009). Some thoughts on superhydrophobic wetting. Soft Matter, 5(1), 51. https://doi.org/10.1039/b811945g.
  • FOWKES, F. M. (1963). Addıtıvıty of Intermolecular Forces at Interfaces. I. Determınatıon of The Contrıbutıon to Surface and Interfacıal Tensıons of Dıspersıon Forces ın Varıous Lıquıds 1. The Journal of Physical Chemistry, 67(12), 2538–2541. https://doi.org/10.1021/j100806a008.
  • FRITZSCHE, J., PEUKER, U. A. (2014). Particle adhesion on highly rough hydrophobic surfaces: The distribution of interaction mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 459, 166–171. https://doi.org/10.1016/j.colsurfa.2014.07.002.
  • GAO, N., & YAN, Y. (2009). Modeling Superhydrophobic Contact Angles and Wetting Transition. Journal of Bionic Engineering, 6(4), 335–340. https://doi.org/10.1016/S1672-6529(08)60135-3.
  • GOGOLIDES, E., ELLINAS, K., TSEREPI, A. (2015). Hierarchical micro and nano structured, hydrophilic, superhydrophobic and superoleophobic surfaces incorporated in microfluidics, microarrays and lab on chip microsystems. Microelectronic Engineering, 132, 135–155. https://doi.org/10.1016/j.mee.2014.10.002.
  • GREßLER, S., FIEDELER, U., SIMKÓ, M. (2010). Self-cleaning, dirt and water-repellent coatings on the basis of nanotechnology. Nano Trust Dossiers, 1–6.
  • GÜRCAN, S., ÖZTÜRK, E. (2014). The Effects of Different Abrasives on Some Limestone Polishing Process. Afyon Kocatepe University Journal of Sciences and Engineering, 14(2), 1–11. https://doi.org/10.5578/fmbd.7494.
  • HAMPTON, M. A., & NGUYEN, A. V. (2010). Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science, 154(1–2), 30–55. https://doi.org/10.1016/j.cis.2010.01.006.
  • HE, Y., JIANG, C., CAO, X., CHEN, J., TIAN, W., YUAN, W. (2014). Reducing ice adhesion by hierarchical micro-nano-pillars. Applied Surface Science, 305, 589–595. https://doi.org/10.1016/j.apsusc.2014.03.139.
  • HEJAZI, V. (2014). Wetting, Superhydrophobicity, and Icephobicityin Biomimetic Composite Materials, (May), 185.
  • HEJAZI, V., MOGHADAM, A. D., ROHATGI, P., NOSONOVSKY, M. (2014). Beyond Wenzel and Cassie − Baxter: Second-Order Effects on the Wetting of Rough Surfaces, (c).
  • HICYILMAZ, C., ULUSOY, U., BILGEN, S., YEKELER, M. (2005). Flotation responses to the morphological properties of particles measured with three-dimensional approach. International Journal of Mineral Processing, 75(3–4), 229–236. https://doi.org/10.1016/j.minpro.2004.08.019.
  • ITHERM, S. (2015). Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis The MIT Faculty has made this article openly available. Dynamic Wetting on Superhydrophobic Proceedings of the 12th IEE.
  • JUNG, Y. C., BHUSHAN, B. (2008). Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. Journal of Microscopy, 229(1), 127–140. https://doi.org/10.1111/j.1365-2818.2007.01875.x.
  • KARAKAS, F., HASSAS, B. V. (2016). Effect of surface roughness on interaction of particles in flotation. Physicochemical Problems of Mineral Processing, 52(1), 18-34..
  • KIM, P., KREDER, M. J., ALVARENGA, J., AIZENBERG, J. (2013). Hierarchical or not? Effect of the length scale and hierarchy of the surface roughness on omniphobicity of lubricant-infused substrates. Nano Letters, 13(4), 1793–1799. https://doi.org/10.1021/nl4003969.
  • LAMARCHE, C. Q., LEADLEY, S., LIU, P., KELLOGG, K. M., HRENYA, C. M. (2017). Method of quantifying surface roughness for accurate adhesive force predictions. Chemical Engineering Science, 158, 140–153. https://doi.org/10.1016/j.ces.2016.09.024.
  • LIU, K., YAO, X., JIANG, L. (2010). Recent developmentsin bio-inspired special wettability.Chemical Society Reviews, 39(8), 3240–3255. https://doi.org/10.1039/b917112f.
  • MA,M., HILL, R. M., BICO, J. (2006). Superhydrophobic surfaces. Current Opinion in Colloid & Interface Science, 11(4), 193–202. https://doi.org/10.1016/j.cocis.2006.06.002.
  • MATZIARIS, K., PANAYIOTOU, C.(2014). Tunable wettability on Pendelic marble: Could an inorganic marble surface behave as a “self-cleaning” biological surface? Journal of Materials Science, 49(5), 1931–1946. https://doi.org/10.1007/s10853-013-7902-8.
  • MILNE, A. J. B., AMIRFAZLI, A. (2012). The Cassie equation: How it is meant to be used. Advances in Colloid and Interface Science, 170(1–2), 48–55. https://doi.org/10.1016/j.cis.2011.12.001.
  • MURAKAMI, D., JINNAI, H., & TAKAHARA, A.(2014). Wetting transition from the cassie-baxter state to the wenzel state on textured polymer surfaces. Langmuir, 30(8), 2061–2067. https://doi.org/10.1021/la4049067.
  • NEUMANN, A. W., GOOD, R. J., HOPE, C. J., & SEJPAL, M.(1974). An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. Journal of Colloid And Interface Science, 49(2), 291–304. https://doi.org/10.1016/0021-9797(74)90365-8.
  • NOSONOVSKY, M., & BHUSHAN, B. (2009). Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 367, 1511–1539. https://doi.org/10.1098/rsta.2009.0008.
  • OWENS, D. K., & WENDT, R. (1969). Estimation of the Surface Free Energy of Polymers.Journal of Applied Polymer Science, 13, 1741–1747. https://doi.org/10.1592/phco.30.10.1004.
  • RAHIMI, M., DEHGHANI, F., REZAI, B., ASLANI, M. R. (2012). Influenceof the roughness and shape of quartz particles on their flotation kinetics.International Journal of Minerals, Metallurgy and Materials, 19(4), 284–289. https://doi.org/10.1007/s12613-012-0552-z.
  • STAROV, V. M. (2010). Nanoscience: colloidal and interfacial aspects.SU,C. (2010). Facile fabrication of a lotus-effect composite coating via wrapping silica with polyurethane.Applied Surface Science, 256(7), 2122–2127. https://doi.org/10.1016/j.apsusc.2009.09.058.
  • TANTUSSI, G., & LANZETTA, M. (2007). Analyses of stone surfaces by optical methods. In AI Te. M 2007, 8th Conference of the Italian Association of Mechanical Technology (pp. 100–128).
  • VAN OSS, C. J., CHAUDHURY, M. K., & GOOD, R. J. (1988). Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems. Chemical Reviews, 88(6), 927–941. https://doi.org/10.1021/cr00088a006.
  • VAZIRI HASSAS, B., CALISKAN, H., GUVEN, O., KARAKAS, F., CINAR, M., & CELIK, M. S. (2016). Effect of roughness and shape factor on flotation characteristics of glass beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 88–99. https://doi.org/10.1016/j.colsurfa.2015.12.025.
  • WANG, L., WANG, X., WANG, L., HU, J., WANG, C. L., ZHAO, B., ZHANG, L. (2017). Formation of surface nanobubbles on nanostructured substrates. Nanoscale, 9(3), 1078–1086. https://doi.org/10.1039/c6nr06844h.
  • WANG, X., ZHAO, B., MA, W., WANG, Y., GAO, X., TAI, R.,ZHANG, L. (2015). Interfacial nanobubbles on atomically flat substrates with different hydrophobicities. Chem. Phy.s. Chem, 16(5), 1003–1007. https://doi.org/10.1002/cphc.201402854.
  • WEBB, H. K., CRAWFORD, R. J.,IVANOVA, E. P. (2014). Wettability of natural superhydrophobic surfaces. Advances in Colloid and Interface Science, 210(22), 58–64. https://doi.org/10.1016/j.cis.2014.01.020.
  • WENZEL, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 28(8), 988–994. https://doi.org/10.1021/ie50320a024.
  • WU, H., ZHU, K., WU, B., LOU, J., ZHANG, Z., CHAI, G.(2016). Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness. Applied Surface Science, 382, 111–120. https://doi.org/10.1016/j.apsusc.2016.04.101.
  • WU, W., GIESE, R. F., VANOSS, C. J. (1996). Change in surface properties of solids caused by grinding. Powder Technology, 89(2), 129–132. https://doi.org/10.1016/S0032-5910(96)03158-0.
  • YEKELER, M., ULUSOY, U., & HIÇYILMAZ, C. (2004). Effect of particle shape and roughness of talc mineral ground by different mills on the wettability and floatability. Powder Technology, 140(1–2), 68–78. https://doi.org/10.1016/j.powtec.2003.12.012.
  • YOUNG, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, 95(0), 65–87. https://doi.org/10.1098/rstl.1805.0005.
  • ZHAO, J.-J., DUAN, Y.-Y., WANG, X.-D., WANG, B.-X. (2013). Effect of Nanostructured Roughness on Evaporating Thin Films in Microchannels for Wenzel and Cassie–Baxter States. Journal of Heat Transfer, 135(4), 041502. https://doi.org/10.1115/1.4023230.
  • ZISMAN, W. A. (1964). Relation of the Equilibrium Contact Angle to Liquid and Solid Constitution. Contact Angle, Wettability, and Adhesion, 43(43), 1–51. https://doi.org/doi:10.1021/ba-1964-0043.ch001\n10.1021/ba-1964-0043.ch001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7550f7a-7116-4127-833a-226039d960d4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.