PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Designing of Steel CHS Columns Showing Maximum Compression Resistance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with a shape optimisation procedure of steel, compressed bars. Circular hollow sections (CHS) of variable cross sections and variable wall thickness are taken into account. The proposed procedure for designing of steel rods exhibiting maximum compression resistance is effective and possible to use in engineering practice. The advantage of the proposed shape of the bar is that it allows to increase the value of its load carrying capacity, i.e. it ensures the transfer of a higher value of compressive force than similar, solid struts of the same mass and length. The extent of the increase in the load capacity relative to the load capacity of the reference solid, cylindrical bar depends on the slenderness of the reference bar and ranges from 60% to 170%. Due to this very beneficial fact, it can be used wherever it is required to maintain a certain stiffness and an increased value of compressive force is desired, as well as in constructions where it is necessary to reduce weight while maintaining the adopted mechanical parameters, e.g. values of load bearing capacity. Final results achieved in the research were presented in the form of the flow chart allowing to design the compressed columns of optimum shape.
Rocznik
Strony
79--92
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Institute of Civil Engineering, University of Zielona Góra
  • Institute of Civil Engineering, University of Zielona Góra
Bibliografia
  • 1. Brandt, AM et al. 1984. Criteria and Methods of Structural Optimization. PWN – Polish Scientific Publishers, Warszawa.
  • 2. Bródka, J. and Łubiński, M., 1971. Light steel constructions. Arkady Publishing House, Warszawa.
  • 3. Brzoska, Z., 1965. Statics and stability of rod and thin-walled structures. State Publishing House, Warszawa.
  • 4. Eulero, L., 1774. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentae, sive solution problematic isoperitrici lattesimo sensu accepti. // Additamentum 1: De curvis elasticis. Lusanne and Geneva, Apid Marcum-Michaelem, Bousquet et Socios.
  • 5. Glabisz, W., 2003. Mathematica in structural mechanics. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 6. Gliński, H., et al. 2012. Mathematica 8. Publishing House of the Jacek Skalmierski Computer Laboratory, Gliwice.
  • 7. Huber, TM 1958. Technical stereomechanics. State Publishing House, Warszawa. 8. Lagrange, JL 1770 - 1773. Sur la figure des colonnes. Miscellanea Taurinensia.
  • 9. Marcinowski, J. and Sadowski, M. 2016. Buckling capacity of non-prismatic rods with polygonal cross-sections. In: Sustainable construction, the University Publishing House of the University of Technology and Life Sciences in Bydgoszcz, Bydgoszcz.
  • 10. Marcinowski, J. and Sadowski, M. 2015. Shape optimization of nonprismatic rods of circular hollow cross-sections and of variable wall thickness. W: Proceedings of the stability of structures: XV-th symposium. Zakopane, Polska, 2018. Łódź: Katedra Wytrzymałości Materiałów i Konstrukcji Politechniki Łódzkiej, 99-100.
  • 11. Marcinowski, J and Sadowski, M. 2020. Using the ERFI Function in the Problem of the Shape Optimization of the Compressed Rod. International Journal of Applied Mechanics and Engineering, Vol. 25, no. 2, 75-87.
  • 12. PN-EN 1993-1-1 2006. Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings. PKN, Warszawa.
  • 13. Opara, K. 2014. Analysis of the differential evolution algorithm and its application in the determination of statistical dependencies. Abstract of the phD thesis.
  • 14. Promotional article Innovative joining techniques in lightweight EJOT® constructions set trends, (http://ejot.pl/pl/download/Ejot_art_STA5_10.pdf).
  • 15. Romanów, F. 1992. Stability of structures. University of Engineering Publishing House, Zielona Góra.
  • 16. Rykaluk, K. 2012. Problems of metal structure stability. Dolnośląskie Wydawnictwo Edukacyjne, Wrocław.
  • 17. Timoshenko, SP and Gere, JM 1963. Theory of elastic stability. Arkady Publishing House, Warszawa.
  • 18. Timoshenko, SP and Goodier, JN 1962. Theory of elasticity. Arkady Publishing House, Warszawa.
  • 19. Timoshenko, SP and Voinowsky-Krieger, S. 1962. Theory of plates and coatings. Arkady Publishing House, Warszawa.
  • 20. Thompson, P., Papadopoulou, G. and Vassiliou, E. 2007. The origins of entasis: illusion, aesthetics or engineering? Spatial Vision, Vol. 20, No. 6, 531–543.
  • 21. Wołgin, LN 1970. Optimization. Scientific and Technical Publishing House, Warszawa.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e74e29c2-c391-4bff-867a-5b3ceca1819a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.