PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Validation process for computational model of full-scale segment for design of composite footbridge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental tests and numerical simulations of a full-scale segment of a foot and cycle bridge made of polimer composites are presented in the paper. The analysed structure is made of sandwich panels, which consist of glass fibre reinforced polymer (GFRP) multi-layered laminate faces and a PET foam (obtained from recycling) core. The dimensions of the segment cross-section are the same as for the target footbridge; however, span length was reduced to 3 m. The experimental tests were conducted in a laboratory of the Faculty of Ocean Engineering and Ship Technology at Gdansk University of Technology. A single vertical force was generated by a hydraulic cylinder and was applied to the platform of the structure. The experimental tests were supported by numerical analyses performed in Femap with NX Nastran software by means of the finite element method (FEM). Results obtained in the computational model were compared with results from experiments. Thus, the numerical model was validated and the obtained conclusions were used in the next step of the design process of a composite footbridge with a span length of 14.5 m.
Rocznik
Tom
Strony
158--167
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Ocean Engineering and Ship Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Babuska I., Tinsley Oden J. (2004): Verification and Validation in Computational Engineering and Science: Basic Concepts, Comput. Methods Appl. Mech. Engrg. 193, 4057–4066.
  • 2. Chróścielewski J., Ferenc T., Mikulski T., Miśkiewicz M., Pyrzowski Ł. (2019): Numerical Modeling and Experimental Validation of Full-Scale Segment to Support Design of Novel GFRP Footbridge, Composite Structures, 213, 299–307, DOI:10.1016/j.compstruct.2019.01.089.
  • 3. Chróścielewski J., Klasztorny M., Romanowski R., Barnat W., Małachowski J., Derewońko A., et al. (2015): Badania eksperymentalne identyfikacyjne kompozytu. Raport z realizacji podzadania, 5.1 WAT (internal report), Warsaw.
  • 4. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Rucka M., Sobczyk B., Wilde K. (2018): Modal Properties Identification of a Novel Sandwich Footbridge – Comparison of Measured Dynamic Response and FEA, Composites Part B, 151, 245–255.
  • 5. Chróścielewski J., Miśkiewicz M., Pyrzowski Ł., Sobczyk B., Wilde K. (2017): A Novel Sandwich Footbridge – Practical Application of Laminated Composites in Bridge Design and In Situ Measurements of Static Response, Composites Part B, 126, 153–161.
  • 6. Chróścielewski, J., Miśkiewicz, M., Pyrzowski, Ł., Wilde, K. (2017): Composite GFRP U-Shaped Footbridge, Polish Maritime Research, 24(s1), doi:10.1515/pomr-2017-0017.
  • 7. Correia, J. R. (2014): Fibre-Reinforced Polymer (FRP) Composites, Materials for Construction and Civil Engineering, 501–556. doi:10.1007/978-3-319-08236-3_11.
  • 8. Ferenc T., Mikulski T. (2020). Parametric Optimization of Sandwich Composite Footbridge with U-shaped Cross-Section, Composite Structures, 246 (2020) 112406, doi: 10.1016/j. compstruct.2020.112406.
  • 9. Ferenc T., Pyrzowski Ł., Chróścielewski J., Mikulski T. (2018): Sensitivity Analysis in Designing Process of Sandwich U-Shaped Composite Footbridge, Shell Structures: Theory and Applications, 4, 413–416, doi:10.1201/9781315166605-94.
  • 10. Fotopoulos K.T., Lampeas G.N., Flasar O. (2019): Development of an Impact Damage Model for Medium and Large Scale Composite Laminates Using Stacked-Shell Modeling: Verification and Experimental Validation, Composite Structures, 229, 111386, DOI: 10.1016/j.compstruct.2019.111386.
  • 11. Klasztorny M., Nycz D., Labuda R. (2018): Modelling, Simulation and Experimental Validation of Bend Tests on GFRP Laminate Beam and Plate Specimens, Composite Structures 184, 604–612, DOI: 10.1016/j.compstruct.2017.10.046.
  • 12. Kurpińska M., Ferenc T. (2017): Application of Lightweight Cement Composite with Foamed Glass Aggregate in Shell Structures, Shell Structures: Theory and Applications Volume 4, DOI: 10.1201/9781315166605-127.
  • 13. Nelson S., Hanson A., Briggs T., Werner B. (2018): Verification and Validation of Residual Stresses in Composite Structures, Composite Structures 194, 662–673, DOI: 10.1016/j. compstruct.2018.04.017.
  • 14. Siwowski, T., Kaleta, D., Rajchel, M. (2018): Structural Behaviour of an All-Composite Road Bridge. Composite Structures, 192, 555–567, doi:10.1016/j.compstruct.2018.03.042.
  • 15. Pyrzowski Ł. (2018): Testing Contraction and Thermal Expansion Coefficient of Construction and Moulding Polymer Composites, Polish Maritime Research, 25(s1), 151–158, doi: 10.2478/pomr-2018-0036.
  • 16. Wiczenbach T., Ferenc T., Pyrzowski Ł., Chróścielewski J. (2019): Dynamic Tests of Composite Footbridge Segment–Experimental and Numerical Studies, MATEC Web of Conferences, 285, 00021, DOI: 10.1051/matecconf/201928500021.
  • 17. Zhang W., Liu Y., Luo H., Xue G., Zhang J. (2016): Experimental And Simulative Study On Accumulator Function in the Process of Wave Energy Conversion, Polish Maritime Research, 23(3), 79–85, DOI: 10.1515/pomr-2016-0035.
  • 18. Zhang Y., Zhang X., Chang X., Wu Q. (2017): Experimental and Optimization Design of Offshore Drilling Seal, Polish Maritime Research, 24, 72–78, DOI: 10.1515/pomr-2017-0107.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e74d2ddf-e5ac-49a4-aa8e-397be4e7aace
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.