PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonlinear Interaction of Modes in a Planar Flow of a Gas with Viscous and Thermal Attenuation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The nonlinear interaction of wave and non-wave modes in a gas planar flow are considered. Attention is mainly paid to the case when one sound mode is dominant and excites the counter-propagating sound mode and the entropy mode. The modes are determined by links between perturbations of pressure, density, and fluid velocity. This definition follows from the linear conservation equations in the differentia form and thermodynamic equations of state. The leading order system of coupling equations for interacting modes is derived. It consists of diffusion inhomogeneous equations. The main aim of this study is to identify the principle features of the interaction and to establish individual contributions of attenuation (mechanical and thermal attenuation) in the solution to the system.
Rocznik
Strony
551--559
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Askaryan G. A. (1966), Self-focusing of a light beam upon excitation of atoms and molecules of medium in a beam, JETP Letters, 4, 10, 270.
  • 2. Chu B.-T., Kovasznay L. S. G. (1958), Nonlinear interactions in a viscous heat-conducting compressible gas, Journal of Fluid Mechanics, 3, 494-514.
  • 3. Duck F. A, Baker A. C., Starrit H. C. (1998), Ultrasound in Medicine, London: Publishing Institute of Physics.
  • 4. Hamilton M. F., Blackstock D. T. [Eds.] (1998), Nonlinear acoustics: theory and applications, Academic Press, New York.
  • 5. Kaner V. V., Rudenko O. V., Khokhlov R. V. (1977), Theory of nonlinear oscillations in acoustic resonators, Soviet Physics Acoustics, 23, 432-437.
  • 6. Leble S., Perelomova A. (2018), The dynamical projectors method: hydro and electrodynamics, CRC Press.
  • 7. Makarov S., Ochmann M. (1996), Nonlinear and thermoviscous phenomena in acoustics, Part I, Acustica, 82, 4, 579-606.
  • 8. Perelomova A. (2003), Heating caused by a nonperiodic ultrasound. Theory and calculations on pulse and stationary sources, Archives of Acoustics, 28, 2, 127-138.
  • 9. Perelomova A. (2006), Development of linear projecting in studies of non-linear flow. Acoustic heating induced by non-periodic sound, Physics Letters A, 357, 42-47.
  • 10. Perelomova A. (2015), The nonlinear effects of sound in a liquid with relaxation losses, Canadian Journal of Physics, 93, 11, 1391-1396.
  • 11. Perelomova A. (2018), Magnetoacoustic heating in a quasi-isentropic magnetic gas, Physics of Plasmas, 25, 042116.
  • 12. Pierce A. (2019), Acoustics. An introduction to its physical principles and applications, Springer International Publishing.
  • 13. Rudenko O. V., Soluyan S. I. (1977), Theoretical foundations of nonlinear acoustics, Consultants Bureau, New York.
  • 14. Ruderman M. S. (2013), Nonlinear damped standing slow waves in hot coronal magnetic loops, Astronomy and Astrophysics, 553, A23.
  • 15. Tikhonov A. N., Samarski A. A. (2011) Equations of Mathematical Physics, Dover Publications; Reprint edition, 800.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e74ccccc-01f3-47f4-bfab-9620f8842d34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.