PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Analysis of Lamb Wave Propagation in Composite Plate with Different Fiber Orientation Angles – Acoustic Emission Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper aims at numerical finite element (FEM) research of guided Lamb waves propagation in multidirectional composite plates. All simulations were conducted in the Abaqus/CAE software by using the dynamic/explicit solver. The material considered in this work was carbon/epoxy composite laminate with [90⁰/θ/θ/θ/-θ/-θ/-θ/90⁰] stacking sequence where θ set was equal 0⁰, 30⁰, 45⁰, 60⁰ and 90⁰. The main goal of the analysis was to evaluate the influence of fiber orientation angles θ on propagation behavior of the separate symmetric S0 and asymmetric A0 Lamb wave modes. Numerical model was created by using the C3D8R brick element. The Lamb waves were generated by using concentrated force with 200 kHz frequency. The acoustic signal generated by travelling wave was registered at two nodes that represent the acoustic emission sensors. Obtained results were presented in tabular form where separate mode velocities were collected and on the normalized displacement versus time plots depicted registered wave signals. In addition, the contour diagrams and through-thickness deformations plots were created to present behavior of the extensional and the flexural modes. The greatest value of the S0 mode velocity was obtained for unidirectional laminates whereas the lowest for composite plate with 45⁰ fiber orientation angle. The asymmetric mode found to generate slightly greater deformation of plate in XZ plane than the symmetric. Recognition of the Lamb wave behavior in multidirectional laminates will allow to better planning the experimental acoustic emission tests.
Twórcy
  • Faculty of Technology Fundamentals, Lublin University of Technology, ul. Nadbystrzycka 38, 20-618 Lublin, Poland
Bibliografia
  • 1. Mueller I, Memmolo V, Tschöke K, Moix-Bonet M, Möllenhoff K, Golub M, et al. Performance Asessment for a Guided Wave-Based SHM System Applied to a Stiffened Composite Structure. Sensors (Basel). 2022;22(19).
  • 2. Xu B, Wu J, Wang M. Study of modal acoustic emission to monitor the impact damage in a composite plate. J. vibroeng. 2017;19(5):3335–48.
  • 3. Šofer M, Šofer P, Pagáč M, Volodarskaja A, Babiuch M, Gruň F. Acoustic Emission Signal Characterisa Using Dual-Sensor Approach and Spectral Clustering Technique. Polymers (Basel). 2022;15(1).
  • 4. Li W, Liu Y, Jiang P, Guo F, Cheng J. Study on Delamination Damage of CFRP Laminates Based on Acoustic Emission and Micro Visualization. Materials (Basel). 2022;15(4).
  • 5. Holford KM, Pullin R, Evans SL, Eaton MJ, Hensman J, Worden K. Acoustic emission for monitoring aircraft structures. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 2009;223(5):525–32.
  • 6. Su Z, Ye L, Lu Y. Guided Lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration. 2006; 295(3-5):753–80.
  • 7. Rzeczkowski J, Samborski S, Moura M de. Experimental Investigation of Delamination in Composite Continuous Fiber-Reinforced Plastic Laminates with Elastic Couplings. Materials (Basel). 2020;13(22).
  • 8. Rzeczkowski J, Samborski S. Experimental and Numerical Research of Delamination Process in CFRP Laminates with Bending-Twisting Elastic Couplings. Materials (Basel). 2022;15(21).
  • 9. Czarnocki P. Resistance of Polymeric Laminates Reinforced with Fabrics against the Growth of Deaminations. Materials (Basel). 2021;14(23).
  • 10. Sadler J, Maev RG. Experimental and theoretical basis of Lamb waves and their applications in material sciences. Can. J. Phys. 2007;85(7):707–31.
  • 11. Yang C, Ye L, Su Z, Bannister M. Some aspects of numerical simulation for Lamb wave propagation in composite laminates. Composite Structures. 2006;75(1-4):267–75.
  • 12. Barroso-Romero M, Gagar D, Pant S, Martinez M. Wave Mode Identification of Acoustic Emission Signals Using Phase Analysis. Acoustics. 2019;1(2):450–72.
  • 13. Hameed MS, Li Z, Chen J, Qi J. Lamb-Wave-Based Multistage Damage Detection Method Using an Active PZT Sensor Network for Large Structures. Sensors (Basel). 2019;19(9).
  • 14. Milosavljevic D, Zmindak M, Dekys V, Radakovic A, Cukanovic D. Approximate phase speed of Lamb waves in a composite plate reinforced with strong fibres. J Eng Math. 2021;129(1):3.
  • 15. Cheng L, Xin H, Groves RM, Veljkovic M. Acoustic emission source location using Lamb wave propagation simulation and artificial neural network for I-shaped steel girder. Construction and Building Materials. 2021;273(1):121706.
  • 16. Barski M, Pająk P. Determination of Dispersion Curves for Composite Materials with the Use of Stiffness Matrix Method. Acta Mechanica et Automatica. 2017;11(2):121–8.
  • 17. Luca A de, Sharif-Khodaei Z, Aliabadi MH, Caputo F. Numerical Simulation of the Lamb Wave Propagation in Impacted CFRP Laminate. Procedia Engineering. 2016;167:109–15.
  • 18. Tumšys O. Experimental Method for Simultaneous Determination of the Lamb Wave A0 Modes Group and Phase Velocities. Materials (Basel). 2022;15(9).
  • 19. Ono K. Experimental Determination of Lamb-Wave Attenuation Coefficients. Applied Sciences. 2022;12(13):6735.
  • 20. Shpak AN, Mueller I, Golub MV, Fritzen CP. Theoretical and experimental investigation of Lamb waves excited by partially debonded rectangular piezoelectric transducers. Smart Mater. Struct. 2020;29(4):45043.
  • 21. Habibi M, Laperrière L. Combining Digital Image Correlation and Acoustic Emission to Characterize the Flexural Behavior of Flax Biocomposites; 2023.
  • 22. Hosseini SMH, Kharaghani A, Kirsch C, Gabbert U. Numerical simulation of Lamb wave propagation in metallic foam sandwich structures: A parametric study. Composite Structures. 2013;97(10):387–400.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e73fd11b-0e5d-4a0f-b43f-af329ef132b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.