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1. Introduction 

Recent definitions of imprecision include aspects 
related to vagueness (“vague; indistinct; not perfectly 
apprehended”) and chance dependency (“dependent 
on chance or unpredictable factors; doubtful; of 
unforeseeable outcome or effect”). According to 
[20], [21], the approximate reasoning is used to 
manage those situations when experts use vague 
concepts for the evaluation, observation and decision 
on a system evolution based on different models 
likes: arithmetic intervals, fuzzy numbers, 
intuitionistic fuzzy numbers, fuzzy logic, and fuzzy 
devices. In order to deal with uncertainty, 
probabilities are attached with objects under 
manipulation (probabilistic trees, probabilistic 
networks, probabilistic generative mechanisms, 
probabilistic thinking). In large, probabilistic 
reasoning [13], [26] and fuzzy logic [32], [33], [34] 
were identified as possible approaches. If subjective 
probabilities, fuzzy sets/logic, neural networks, 
evolutionary computing and hybrid approach, such a 
framework is called soft computing based [20], [21]. 
The mentioned references proposed a soft computing 
framework for software reliability engineering. 
Software reliability modelling and prediction in soft 
computing environments are considered also by [15] 
and [16]. This paper continues the developments  
 
 
 

 
considering the new approaches based on 
intuitionistic fuzzy sets and numbers. 
The next section is dedicated to various models 
useful for decision making under incomplete 
information: imprecise probabilities, generalized 
intervals, fuzzy sets, vague sets, and intuitionistic-
fuzzy sets. 
The usage of triangular intuitionistic-fuzzy numbers 
in system reliability computing is described in the 
third section. Similar computation will be necessary 
for trapezoidal intuitionistic-fuzzy numbers.  
The fourth section proposes some methodologies for 
intuitionistic-fuzzy ranking of the software reliability 
growth models. The methodologies consider single 
and multi-expert models, consensus establishing and 
distance-based classification. 
Experimental results on the applicability of the 
proposed approaches are described in the fifth 
section, and concluding remarks are presented in the 
end. 
 
2. Recent approaches in imprecision and 
uncertainty modelling 

The uncertainty appears when the knowledge is 
incomplete (missing pieces of knowledge, low 
plausibility, wrong or incomplete hypothesis). Using 
statistical approach this track was followed in [24], 
[28]. A priori and a posteriori probabilities are used 
to derive distribution functions based on minimum 
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information principle. 
Interval representation provides a way to consider 
the crisp or fuzzy membership. However, the interval 
interpretation can be different. One interpretation of 
intervals is based on imprecise probabilities [9], [10], 
[29], [34]. According to [10], “imprecise probability 
is used as a generic term to cover all mathematical 
models which measure chance or uncertainty without 
sharp numerical probabilities”. From this point of 
view researchers already identified various models: 
comparative probability orderings, interval-valued 
probabilities (given by upper and lower 
probabilities), fuzzy measures, possibility measures, 
etc. From a mathematical point of view, all the 
models listed above are equivalent to special kinds of 
upper or lower previsions. 
Another interpretation generates approaches based 
on possibility and necessity degrees. As Dubois [12] 
mentioned, “assigning an interval [a; b] to a quantity 
x”, not necessarily random (the real value of x is can 
be precise, but unknown), “means that x is known to 
take one and only one value in [a; b], but it is not 
known which one.” The size of the interval should be 
small in order to be more informative. The 
possibilistic interpretation asserts that x in [a; b] 
describes that any value outside [a; b] is impossible 
for x. Both possibility and necessity degrees can be 
used under this interpretation. According to [12], the 
“possibility degree of an event expresses the extent 
to which this event is plausible”, and the “necessity 
degrees express the certainty of events”. 
Computing with intervals is used to deal with 
uncertainty by the interval analysis method, a method 
developed by mathematicians since the 1950s as an 
approach to give bounds on rounding errors and 
measurement errors in mathematical computation. 
After the computational framework was established 
various numerical methods that yield reliable results 
were designed and implemented in software. For 
reliability analysis tasks, the generalized intervals 
[30] were considered. 
An alternative to the interval approach is the usage of 
fuzzy numbers, which are special cases of fuzzy sets. 
In this case, an interval is given to describe a real 
number by means of a membership function.  
A fuzzy set (firstly introduced by Zadeh [33]) is 
called a fuzzy number if its membership function 
increases monotonously to a unique maximum 
degree equal to 1 and then decreases monotonously. 
Fuzzy numbers can be used to introduce fuzzy 
probabilities. If X is a discrete random variable with 
n realization X1, X2, …, Xn, then A1, A2, …, An 
which are fuzzy numbers having zero degree 
membership outside of the interval [0, 1], and unique 
maximum degree ϕAi(pi) = 1, for some pi belonging 
to [0, 1], with the sum of all pi (i = 1, 2, …, n) being 

unity defines the fuzzy probabilities A1, A2, …, An. 
In the case of intuitionistic-fuzzy numbers, both a 
membership and a non-membership function are 
given. Generalized fuzzy numbers are also used for 
imprecise modelling [1, 5, 22]. 
In fuzzy computing with intuitionistic fuzzy numbers 
[5, 22], the most used membership (and non-
membership) functions have triangular or trapezoidal 
shape. The output is an interval, a membership (and a 
non-membership) function, the value being obtained 
by a defuzzyfication procedure. If A is a TIFN 
(Triangular Intuitionistic Fuzzy Number) then A is 
described by five real numbers (a1, a2, a3; a', a''), a' ≤ 
a1 ≤ a2 ≤ a3 ≤ a'', and two triangular functions. The 
first one – the membership function – is given by: 
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The second one – the non-membership function – has 
the following definition: 
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Let be valid the relation: '
44321

'
1 aaaaaa ≤≤≤≤≤ . 

A Trapezoidal Intuitionistic Fuzzy Number A in R 
(TrIFN), written as (a1, a2, a3, a4; '

1a , a2, a3, '
4a ), has 

the membership function  
 

   















≤≤
−
−

≤≤

≤≤
−

−

=

otherwise ,0

for  ,

for  ,1

for  ,

)(

43

34

4

32

21

12

1

axa
aa

xa
axa

axa
aa

ax

xAµ , 

 
and the non-membership function 
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The concept of probability based on frequency can 
be used to model some kind of uncertainty only for 
the case of large number of repeatable circumstances 
[26]. One extension of classical probability considers 
subjective probabilities containing no formal 
calculations and reflecting only the subject's opinions 
(based on past experience), and embedding a high 
degree of personal bias. Other extensions are based 
on imprecise probabilities [9], [10], [11], [29], [30], 
[34]. 
Let us consider the following inference problem. 
Given a serial system S having two components C1 
and C2, α the probability of C1 to fail before m hours 
of working time, and the mean-time-to failure of C2 
belongs to the interval [n, p] (hours), is asked to infer 
γ the probability of S to fail after q hours of working 
time, where q is greater than maximum of m, n, and 
p. The solution can be obtained on the base of 
interval approaches. 
The uncertainty is modelled by a family F of 
probability distributions, and lower and upper 
probability bounds are defined by: P_(A) = 
inf{(P(A), P in F}, P+(A) = sup{P(A), P in F}, with 
P_(A) = 1-P+(CA), where CA is the complement of A. 
This kind of model can be extended to the P-box 
model. A p-box is defined by a pair of cumulative 
distributions (FL, FU) on the real line such that FL ≤ 
FU, bounding the cumulative distribution of an 
imprecisely known probability function with density 
p. According to [12], “A p-box is a covering 
approximation of a parameterized probability model 
whose parameters (like mean and variance) are only 
known to belong to an interval.” This approach is 
different from confidence bands obtained by various 
methods, including bootstrap [4]. 
Imprecise reliability is still at stage of development; 
even some research was done according to [9], and 
[29]. 
A successful approach uses generalized intervals 
[30]. A generalized interval x := [x1; x2] (x1, x2 in R) 
is determined by a pair of real numbers x1 and x2; x 
is proper when x1 ≤ x2 and is improper when x2 ≤ x1. 
When x1 = x2, x is a pointwise interval.  
Generalized interval calculus is based on the 
Kaucher’s arithmetic [30]. Given a generalized 
interval x = [x1, x2], two operators pro and imp return 
proper and improper values, defined by pro(x) := 
[min(x1, x2); max(x1, x2)] and imp(x) := [max(x1, x2); 

min(x1, x2)] respectively. The relationship between 
proper and improper intervals is established by 
duality with the operator dual as dual(x) := [x2, x1].  
Given a sample space Ω and algebra of random 
events over Ω, it is possible to define the generalized 
interval probability which obeys the axioms of 
Kolmogorov, reconsidered if interval probabilities 
are used. An interval probability p = [p1, p2] is a 
generalized interval without the restriction of p1 ≤ p2. 
The probability of the union of two events E1 and E2 
is defined as P(E1 ∪ E1) = p(E1) + p(E2) – dual(p(E1 
∩ E2)), where x+y is defined by x+y = [x1, x2]+[y1, 
y2] = [x1+y1, x2+y2], x-y = [x1-y2, x2-y1], x.y and x/y 
being defined by special rules depending on the sign 
of the parts. The inclusion relationship between 
generalized intervals (and the binary relation ≤) 
corresponds to the geometrical segment inclusion. 
The imprecise model based on interval probabilities 
is based on [3, 9, 10, 29, 30]: 

• P(CA) =  1 – dual (p(A)); equivalent with 
p1(CA) = 1 – p2(A), and p2(CA)= 1 – p1(A); 

• For a mutually disjoint event partition the 
sum of interval probabilities is equal to 
unity. 

• The Bayes' rule with generalized intervals is 
defined as 

∑
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where Ei are mutually disjoint partition of 
the set Ω. 

In this way, the reliability formulas developed in the 
classical framework will be applied taking into 
account the new operators. However, a final 
interpretation is required similar to defuzzification 
approach used during the application of the fuzzy, 
vague, or fuzzy-intuitionistic models. 
Vague modelling [7, 8, 17] is considered in the 
following and the fuzzy-intuitionistic computing 
methodology is shown. When the universe of 
discourse X is a non empty and finite set, a vague set 
A of the universe of discourse U can be represented 
by a true-membership function tA and a false-
membership function fA. A vague number is a vague 
subset in the universe of discourse X that is both 
normal (the maximum value of the true membership 
function is 1) and convex (similar to fuzzy convex 
sets). 
Vague calculus uses triangular vague sets, 
trapezoidal vague sets, and general vague sets. As an 
example, if the triangular vague sets are used (A = 
(a1, a2, a3; tA, fA), B = (b1, b2, b3; tB, fB)) then: 
 

A + B = (a1 + b1, a2 + b2, a3 + b3; tA+B, fA+B); 
A – B = (a1-b3, a2-b2, a3-b1; tA-B, fA-B); 
A * B = (a1b1, a2b2, a3b3; tAB, fAB), 
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and 
A / B = (a1/b3, a2/b2, a3/b1; tA/B, fA/B), with functions t 
and f defined correspondingly. 
 

Based on vague calculus the system reliability can be 
obtained for all kind of systems: series, parallel, and 
hybrid. 
The operations on IFS (Intuitionistic Fuzzy Sets) can 
be introduced according to the generalized fuzzy set 
theory. Some examples follow [2, 22]: 
 

A ∩ B = {(x, min(µA(x), µB(x)), max(νA(x), νB(x))),x∈ X}; 
A ∪ B = {(x, max(µA(x), µB(x)), min(νA(x), νB(x))),x∈ X}; 
A + B = {(x, µA(x)+µB(x)-µA(x)µB(x), νA(x)νB(x)), x∈ X}; 
AB = {(x, µA(x)µB(x), νA(x)+νB(x)- νA(x)νB(x)), x∈ X}; 
 

The arithmetic operation, denoted generically by *, 
of two IFNs (Intuitionistic Fuzzy Numbers) is a 
mapping of an input subset of RxR (with elements x 
= (x1, x2)) onto an output subset of R (with elements 
denoted by y). Let A1 and A2 be two IFN, and (A1*A2) 
the resultant of the operation *. Then: 
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and  
 
   )]()([)( 22112*1)2*1( xAxAy xxyAA ∨∧= =ν . 

 
The arithmetic operations on IFNs can be defined 
using the (α, β) – cuts method. Let α, β ∈ [0, 1] be 
fixed numbers such that α + β ≤ 1. A set of (α, β) - 
cut generated by an IFS A is defined by: Aα, β = {(x, 
µA(x), νA(x)), x ∈ X, µA(x) ≥ α, νA(x) ≤ β}.  
The (α, β) – cut of a TIFN is given by 

{ } )](),([)],(),([ '
2

'
121, ββααβα AAAAA = , where: 

• )(1 αA , and )('
2 βA are continuous, 

monotonic increasing functions of α, 
respective β; 

• )(2 αA , and )('
1 βA  are continuous, 

monotonic decreasing functions of α, 
respective β; 

• )1()1( 21 AA = , and )0()0( '
2

'
1 AA = . 

When using the 5-tuple notation, we obtain:  
 

)()( 1211 aaaA −+= αα , 

)()( 2332 aaaA −−= αα , 

)'()( 22
'
1 aaaA −−= ββ , 

and  
)''()( 22

'
2 aaaA −+= ββ . 

 
To fulfill the aim of this paper, the following 
properties are necessary [22]: 
1. If TIFN A = (a1, a2, a3; a', a''), and k > 0, then 

the TIFN kA is given by (ka1, ka2, ka3; ka', ka''). 
2. If TIFN A = (a1, a2, a3; a', a''), and k > 0, then 

the TIFN kA is given by (ka3, ka2, ka1; ka'', ka'). 
3. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', 

b'') are TIFNs, then the TIFN BA⊕ is defined by 
(a1+b1, a2+b2, a3+b3; a'+ b', a''+b''); 

4. If A = (a1, a2, a3; a', a'') and B = (b1, b2, b3; b', 
b'') are TIFNs, then the TIFN BA⊗ is defined by 
(a1b1, a2b2, a3b3; a'b', a''b''). 

The above results can be proved using the (α, β) – 
cuts method. 
 
3. Intuitionistic-fuzzy reliability modelling 
 

As a general rule, systems (hardware, software, 
distributed, embedded etc.) are composed by various 
components connected according to some 
architecture depending on the requirements, 
environment and the new design/development 
paradigms. In the following, different aspects on 
reliability engineering will be considered when soft 
computing approaches are used. We are using system 
reliability as a consequence of the cybernetic nature 
of systems based on both hardware and software. 

 
Figure 1. A serial system 

If S is a system integrating a number of components 
(off-the-shelf components) according to a serial 
architecture (the above diagram) and if Rj is the 
intuitionistic fuzzy reliability of the j th component, 
and RS is the intuitionisc fuzzy reliability of the 
entire system (with n items), and Rj = (r j1, rj2, rj3; r j', 
r j''), then  
 
   nS RRRR ⊗⊗⊗= L21 , 
being defined by (r1, r2, r3; r', r''), with: 
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If S is a system composed by n items running in 
parallel, using the above notations, the intuitionistic 
fuzzy reliability of S is given by [22]:  
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Other soft computing approaches were proposed in 
[15], [16]. Optimal software reliability allocation 
using intuitionistic-fuzzy sets is described in [2].  
Using the above methodology intuitionistic-fuzzy 
reliability formulas can be derived for hybrid 
architectures like neural architectures for 
evolutionary computing systems. 
 
4. An intuitionistic-fuzzy method for ranking 
software reliability growth models 
 

According to Musa [23], “software reliability 
engineering is based on a solid body of theory that 
includes operational profiles, random process 
software reliability models, statistical estimation, and 
sequential sampling theory” consisting of five 
activities: “define <<necessary reliability>>, develop 
operational profiles, prepare for test, execute test, 
and apply failure data to guide decisions.”   
Also, software reliability engineering includes effects 
of product and development process metrics and 
factors (on operational software behaviour. Finally, 
the software reliability engineering provides 
guidelines for software development, acquision, use, 
and maintenance [18], [19]. 
Being defined as a probability, the reliability analyse 
uses uncertainty models. However, sometimes, the 
data cannot be measured and recorded precisely. In 
this case imprecise models are necessary to be used. 
The existence of fuzziness is modelled by 
membership functions, respective membership and 
non-membership functions when intuitionistic-fuzzy 
approach is used. Cai [6] identifies fuzzy success 
states and fuzzy failure states of a system under 
operation. Wu [31] considers the systems’ fuzzy 
reliability estimation using Bayesian approach 
making use of fuzzy random variables. Nonlinear 
models for the evaluation of the reliability using 
fuzzy sets are described in [14]. A fuzzy-
probabilistic approach was described in [25].  
In the following, we describe an intuitionistic-fuzzy 
approach for ranking software reliability growth 
models (SRGM) from a nonempty set of 
alternatives {A1, A2, …, Am}.  
Two types of analysis are considered. For the first 

one, one expert has to select the most appropriate 
SRGM to be used during failure-data analysis. The 
second case addresses the existence of p experts {E1, 
E2, …, Ep} evaluating every SRGM used during data 
analysis. 
The selection is based on a nonempty set of 
criteria/attributes {C1, C2, …, Cn} taking into 
consideration weights indicating the importance 
(priority) of every criterion. Linguistic variables like: 
very low, low, medium, high, very high (or very poor, 
poor, average, good, very good), are used to describe 
the performance of every SRGM related to every 
criterion. 
For every linguistic variable there are defined a 
membership and a non-membership function. As 
defined above, if Ω is the universe of discourse, an 
intuitionistic fuzzy set X in Ω is given by X = {(x, 
µA(x), νA(x)), x ∈ X}, where µA(.): X → [0, 1] gives 
the degree of membership, and νA(.): X → [0, 1] 
gives the degree of non-membership of x to A. The 
expression 1 - µA(x) - νA(x), denoted by τA(x), is 
called the hesitancy degree.  
Let us consider, in the following, as universe of 
discussion the set of SRGMs denoted by {A1, A2, …, 
Am}. The matrix of linguistic performance is 
obtained and should be used to choose the “awarded” 
SRGM. In this manner a three dimensional array of 
linguistic values is obtained: ACE = {(µijk, νijk); i = 1, 
2, …, m; j = 1, 2, …, n; k = 1, 2, …, p} describing 
both the degree of acceptance and the degree on non-
acceptance (rejection) by the expert Ek, of the SRGM  
indexed by i, related to the criterion Cj. Every expert 
Ek associates a weight (a positive real number) for 
every criterion Cj according to his/her belief for the 
importance of the criterion: a matrix W = (wik; i = 1, 
2, …, p; k = 1, 2, …, n) is built. When p = 1 it is 
obtained the single expert model (useful when one 
expert has to select one SRGM), and if p > 1 the 
multi-expert model is obtained. The weighted 
average of the linguistic performance value is 
calculated for each SRGM indexed by i as follows:  
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standing for a weighted average membership, non-
membership, and hesitation to be considered by the 
expert Ek, where 
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The single expert model will select the SRGM 
having the largest weighted average membership 
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degree (optimistic scenarios), the smallest weighted 
average non-membership degree (pessimistic 
scenarios), or the smallest weighted average 
hesitation degree (prudent scenarios). 
When there are available many experts then if there 
is a model 

0i
A having the weighted average 

performance acceptable (with the largest/smallest/ 
smallest membership/ non-membership/ hesitation 
degree) by all experts then 

0i
A will be selected as the 

winner. Otherwise, a consensual ranking is required. 
As a natural fact, experts are resistant to option 
changing, and the model should consider both 
membership and non-membership degrees:  
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where (x, y) describes the weighted average 
linguistic performance when consider all experts and 
SRGMs. The target is to identify those cases with 
small resistance to option changing. 
Distance–based similarity study is another approach. 
Different distances have been defined in literature as 
described in [1]. These are based on geometrical 
representation of intuitionistic fuzzy sets (2D, 3D, 
spherical). For the case study discussed in this paper, 
the normalized Euclidian distance was used, namely, 
if A and B are intuitionistic fuzzy sets in X, the 
normalized Euclidean distance d(A, B) is given by: 
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where α, β, and γ give the importance of the 
membership, non-membership, and hesitation 
function during analysis process. The case α = β = γ 
= 1 was considered, but variations can be used for 
simulation reason. 
 
Table 1. Intuitionistic-fuzzy values 

 
 

Applying the aggregation method already presented, 
the Table 1 is obtained. 
The following matrix of distances between models 
considering preferences of all experts is obtained and 
used for similarity analysis [1]: DA = (dij)1≤i,j≤m, 
where 

   ( ) ( ) ( )[ ]∑ −+−+−=
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Similarly, a matrix DE containing the distance 
computed between experts when considering models 
as their attributes can be generated and analyzed. 
 
5. Experimental studies 
 

Various SRGMs exist to estimate the expected 
number of total defects of the expected number of 
remaining defects in software. A systematic strategy 
in failure-data analysis using SRGMs has to 
determine the best models as testing phase 
progresses. Also it is necessary to establish the best 
moment for ending the test phase [18], [19], [27]. 
In order to apply the intuitionistic-fuzzy approach 
described above, the set of models should be 
organized in subsets based on similarities. For 
instance, the Goel-Okumoto (G-O) model, the 
delayed S-shaped (S) model, the Gompertz (G) 
model, and the Yamada exponential (Y) model could 
belong to the same subset because all of them 
assume that testing takes into account an operational 
profile. Static defect estimation models like capture-
recapture models, curve-fitting methods and 
experience-based methods will belong to a different 
subset. A full classification scheme [23] identifies 
five attributes to be considered: time domain 
(calendar, execution), category (finite failures, 
infinite failures), type (Poisson, Binomial, other 
types), class (exponential, Weibull, Pareto, 
Geometric, Inverse linear, Inverse polynomial, 
Power), and family (distribution dependent type). It 
is important to apply the ranking approach to models 
having similar assumptions or conditions. 
Taking into consideration the existence of a large 
variety of software differing by size, structure, 
function, operational environment, development life-
cycles, Musa [23] considers like evaluation criteria: 
projective validity, quality of assumptions, 
applicability and simplicity. The practice proved that 
the best model can be dependent on system/release 
and is not a good idea to use it for new releases and 
other systems without a new investigation.    
During our investigation the first subset was 
considered for analysing failure data collected during 
software testing. Inspired by [27], the criteria used 
for model evaluation can be: the goodness-of-fit level 
(not convergence, very low, low, medium, good, 
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very good), the prediction stability (very unstable, 
unstable, stable, very stable), and predictive ability 
(low ability, average ability, high ability, very high 
ability). The predictive ability can have similar 
meaning as projective validity of Musa [23].  
There are many statistical tests useful to evaluate the 
goodness of fit (how the model fits the collected data 
under analyse): χ2, Kolmogorov-Smirnov, Cramer-
von Mises, Anderson-Darling, and R2. During 
experiments, the R2 measure was selected for usage.  
A prediction is α-stable if the prediction k is within 
α% of the prediction k-1. The ranking procedure can 
be applied daily, weekly, or monthly. For simplicity, 
we apply the methodology every week during the 
testing period. The prediction is very stable for α = 
10, stable for α = 20, unstable for α = 40, and very 
unstable for α = 60. However, this threshold is 
subjective and can be defined different from project 
to project.  
The predictive ability is measured in terms of error 
(the difference between estimate and actual data) and 
relative error (the ratio error/actual). The linguistic 
variable approach is used in the context of relative 
error usage. The model proves β-ability if the 
absolute value of relative error is less then β%. Very 
high ability is obtained for β = 1, high ability is 
considered when β = 5, average ability is compatible 
with β = 10 and low ability is considered when β>10. 
Also the choice of the threshold β is a subjective 
task.   
The applicability of the distance-based approach is 
easy to be understood and is not described.  
For the ranking methodology, the experiment was 
conducted using failure data collected during the 
development of some Java-based software for time 
series analysis. The development period was one 
year. Data from testing phase where collected for 6 
month (24 weeks). A fault was immediately removed 
and appropriate updates in software were made 
accordingly, if required. The SRGMs where applied, 
without rejection, starting with the fourth week after 
software stabilization. We present the evaluation 
results obtained in the week 20 (the number of 
failures found was 19): 
 
Table 2. Subjective evaluation 

Model Failure 
estimate 

Goodness 
of fit 

Prediction 
stability 

Predictive 
ability 

G-O 12 good very 
stable 

average 

S 18 very 
good 

stable very high 

G 17 good stable high 
Y 25 medium stable high 
 

We found that Yamada exponentional model 
overestimates the number of failures, and Goel-
Okumoto underestimates this number. The delayed 
S-shaped model and the Gompertz model give 
similar predictive results, the difference consisting in 
different levels of subjective evaluation criteria. 
When define the linguistic variables in the 
intuitionistic-fuzzy environment, the last three 
columns are presented in the format of Table 1. The 
group of experts has the possibility of establish 
priorities over goodness-of-fit, prediction stability, 
and the predictive ability. After the aggregation 
procedure only one column/expert is obtained, and 
the consensus strategy will be applied if experts gave 
different rankings. Three evaluators with experience 
in software reliability growth modelling participate 
during our experiment. Being a small software 
project, the multi-expert ranking model was simple 
to be applied for our experiment. 
 
6. Conclusion 

Software reliability engineering helps the software 
management team to obtain reliable software. This 
paper reviews various models useful for decision 
making under incomplete information (imprecise 
probabilities, generalized intervals, fuzzy sets, vague 
sets, and intuitionistic-fuzzy sets) and describes the 
usage of triangular intuitionistic-fuzzy numbers in 
system reliability computing. Some methodologies 
for intuitionistic-fuzzy ranking of the software 
reliability growth models are proposed. The 
methodologies consider single and multi-expert 
models, consensus establishing and distance-based 
classification. 
Experimental results on some Java-based software 
for time series analysis show the applicability of the 
proposed approaches. 
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