PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The analytical expressions to describe wave propagation and heat release during microwave treatment of porous inhomogeneous plate based on the W.K.B. solution model

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper study for wave propagation in non-homogeneous porous plate sample with slowly varyingrefractive indexis presented. It is based on simple symmetricsolution of the wave equation for linearlypolarized electromagnetic wave aligned into the porous plate perpendicularlyto the external surface. Using correct boundary conditions both the transverseelectric (T.E) and transversemagnetic (T.M) modes, named shortly by (T.E.M) mode for electromagnetic wave, are considered. The Wentzel-Kramers-Brillouin (W.K.B.) solutions for symmetric incident irradiation of fixed power generated at the plate surfaceswas obtained. It isdonethe analysis of the reflection and transmission coefficients on the surfaces of plate.
Rocznik
Strony
69--81
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Pidstryhach Institute of Applied Problems for Mechanics and Mathematics of the National Academy of Sciences, Ukraine
  • Pidstryhach Institute of Applied Problems for Mechanics and Mathematics of the National Academy of Sciences, Ukraine
  • Karpenko Physico-Mechanical Institute of the National Academy of Sciences, Ukraine
Bibliografia
  • 1. Yeh P. Optical Waves in Layered Media. -New York:"Wiley", 1988, 416p.
  • 2. Merzbacher E., Quantum Mechanics.-New York: "John Wiley", 1998, 672p.
  • 3. EghlidiM. H., MehranyK., RashidianB. Improved differential transfer matrix method for inhomogeneous one-dimensional photonic crystals//J. Opt. Soc. Am. B. -2006., Vol. 23, No. 7, P. 1451-1459.
  • 4. EghlidiM. H., Mehrany K., RashidianB.Modified Differential Transfer Matrix Method for Solution of One Dimensional Linear Inhomogeneous Optical Structures//J. Opt. Soc. Am. B. -2005, 22, P.1521-1528.
  • 5. KhorasaniS., MehranyK., Differential transfer-matrix method for solution of one-dimensional linear nonhomogeneous optical structures//J. Opt. Soc. Am. B.-2003, 20,P.91-96.
  • 6. MehranyK., KhorasaniS., Analytical solution of non-homogeneous anisotropic wave equations based on differential transfer matrix method//J. Opt. A.: Pure Appl. Opt.-2002, 4, P.624-635.
  • 7. S. Khorasani, A. Adibi, “Analytical solution of linear ordinary differential equations by differential transfer matrix method,” Electron. J. Differ. Equations 2003, 1-18 (2003).
  • 8. Howes A.H., Whitaker S. The spatial averaging theorem revisited // Chemical Engineering Science.-1980.-23.-№12.-P.1613-1623.
  • 9. Modeling and optimization in thermomechanics of electrically conductive heterogeneous bodies (ed. byY.Y.Buryak andR.М. Kushnir, Vol. 1,2) –Lviv: "Spolom", 2006, 474с.
  • 10. O. R. Hachkevych, R. F. Terletskiy,T. V. Holubets.Calculation of effective electrophysical characteristics of hydrated porous materials// Mathematical methods and physical-mechanical fields. 2009. –52,No.1. –p. 159-171.
  • 11. LandauL.D.,LifshitzE.M.Electrodynamics of continuous media.-Moskow: “Nauka”, 1982.-480p.
  • 12. SemyonovN.A. Technical electrodynamics. –М: “Svyaz”, 1973. -480p.
  • 13. Katselenbaum B.Z.High-frequency electrodynamics. Fundamentals of mathematical apparatus.–М: "Nauka", 1966. –240p.
  • 14. Ugwu E.I., Udun P.C. Determination of refractive index, reflectance // “Transmittance of FeZz Thin Film Deposited by Solution Growth Technique (SGW)”, JICCOTECH. Maiden Ed., 2005.
  • 15. Bass F., Resnick L. The electromagnetic wave propagation through a stratified inhomogeneous anisotropic medium // Prog. in Electromagn. Res. -2004. –48. –P.67-83.
  • 16. Ayappa K.G., Davis H.T., Barringer S.A., Davis E.A. Resonant microwave power adsorption in slabs and cylinders // . I. Ch. I. Journal. –1997. –43 (3). –P.615-624.
  • 17. BasakT. Analysis of resonanceduring microwave thawing of slabs // International Journal of Heat and Mass Transfer. –2003. –46. –P.4276—4301.
  • 18. Chamchong M., Datta A.K. Thawing of foods in a microwave over. Effect of power leveland power cycling // Journal of Microwave Power and Electromagnetic Energy. –1999. –34. –P.9-21.
  • 19. Zang H, Datta A.K., Taub I.A. Doona C. Electromagnetics heat transfer and thermokinetics in microwave strerilization // A. I. Ch. I. Journal. –2001. –47. –P.1957-1968.
  • 20. HolubetsT.V., Terletskiy R.F. Application of the W.K.B. method. to the calculation of dielectric losses in a porous humidified medium under microwave irradiation // Applied problems of mechanics and mathematics. –2011. –Вип. 9. –с.22-129.
  • 21. Holubets T.V. Investigation of the structural properties of porous material according to the sorption isotherms or drainage curves // Mathematical Modelling and Computing. 2016.-Vol.3, No.1, P.23-32.
  • 22. van Genuchten M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils // Soil Science Society of America Journal. –1980. -44, No. 5. -P. 892–898.
  • 23. Brekhovskikh L.M. Waves in layered media. -New York, 1980.-503p.
  • 24. Tsang L., J.A. Kong, R.T. Shin. Theory of microwave remote sensing. -New York: "Wiley-Intersciences",1995.-613p.
  • 25. Jianwei L., Wei C., Qiang G., Hongming Z., Xinhai H. and Bin W.. In situ fabrication of magnetic and hierarchically porous carbon films for efficient electromagnetic wave shielding and absorption // ACS Appl. Mater. Interfaces. -2022, Vol. 14, No. 29, P.33675–33685.
  • 26. Y.Lianga, Y.Chena, X.Kea, Z.Zhanga, W.Wua, G.Lina, Z.Zhouc and Z.Shia. Coupling of triporosity and strong Au-Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes// Journal of Materials Chemistry A. -2020, Vol.8, P. 18094-18105.
  • 27. Young H.H., J.-Y.Won, H.-S.Yoo, J.-H.Kim, R.Choi, and J.K.Jeong. High performance metal oxide field-effect transistors with areverse offset printed Cu source/drain electrode//ACS Appl. Mater. Interfaces. -2016,Vol.8, P.1156−1163.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e73b4e68-a682-4e20-86ad-6eae7804e68d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.