PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Development of a new production method of foam-like wound dressings for skin regeneration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chitosan is widely used to prepare films, hydro-gels, cryogels, sponges, fibers and other various biomaterials used in the tissue engineering field. It is one of the best processable polysaccharides used in biomedicine. However, its stability is generally lower as compared with others, due to its pH sensitivity and hydrophilic character. Using chitosan in combination with agarose may not only improve chemical and mechanical properties of the resultant material (by the formation of a biocomposite), but also lead to the formation of a gel imitating physical attributes of the extracellular matrix. Moreover, the combination of these two polysaccharides has a promising ability to improve the stability of chitosan and to increase fibroblasts’ affinity to agarose. Characteristic advan-tageous features of these natural polymers raise a wide interest in tissue engineering. The aim of this study was to develop and optimize a new method to produce a highly biocompatible foam-like chitosan/agarose wound dressing for skin healing applications. The production process optimization helped to obtain the absorbent foam-like biomaterial which is non-toxic to skin fibroblasts and does not conduce their adhesion. Employing sodium bicarbonate as the main agent in the foaming reaction not only led to obtaining the foam-like structure but also neutralized the acidic pH, making the material non-toxic and non-irritating to the skin. In conclusion, the new foam-like biomaterial has great potential for biomedical applications as the wound dressing accelerating the healing process of the damaged tissues.
Słowa kluczowe
Rocznik
Strony
16--20
Opis fizyczny
Bibliogr. 23 poz., rys., zdj.
Twórcy
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-400 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-400 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-400 Lublin, Poland
  • Department of Biochemistry and Biotechnology, Medical University of Lublin, 20-400 Lublin, Poland
Bibliografia
  • [1] Clark R.A.F., Ghosh K., Tonnesen M.G.: Tissue engineering for cutaneous wounds. Journal of Investigative Dermatology 127 (2007) 1018-1029.
  • [2] Vig K. et al.: Advances in Skin Regeneration Using Tissue Engi-neering. International Journal of Molecular Sciences 18 (2017) 789.
  • [3] Catalano E., Cochis A., Varoni E., Rimondini L., Azzimonti B.: Tissue-engineered skin substitutes: an overview. Journal of Artificial Organs 16 (2013) 397-403.
  • [4] Larouche D. et al.: Improved Methods to Produce Tissue--Engineered Skin Substitutes Suitable for the Permanent Closure of Full-Thickness Skin Injuries. BioResearch Open Access 5 (2016) 320-329.
  • [5] Langer R., Vacanti J.P.: Tissue engineering. Journal of Cellular Biochemistry 44 (1990) 227-256.
  • [6] Dhandayuthapani B., Yoshida Y., Maekawa T., Kumar D.S.: Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science 2011 (2011) 1-19.
  • [7] Rheinwald J.G.: Human epidermal keratinocyte cell culture and xenograft systems: applications in the detection of potential chemical carcinogens and the study of epidermal transformation. Progress in clinical and biological research 298 (1989) 113-125.
  • [8] Vig K. et al.: Advances in skin regeneration using tissue engineering. International Journal of Molecular Sciences 18 (2017) 789.
  • [9] Keck M., Lumenta D.B., Kamolz L.P.: Skin Tissue Engineering in Dermal Replacements in General, Burn, and Plastic Surgery, Vienna. Springer Vienna (2013) 13-25.
  • [10] Cornelius V.J., Majcen N., Snowden M.J., Mitchell J.C., Von-cina B.: Preparation of smart wound dressings based on colloidal microgels and textile fibres. Smart Materials 6413 (2006) 64130X.
  • [11] Bharambe S. V., Darekar A.B., Saudagar R.B.: Wound healing dressings and drug delivery systems: A review. International Journal of Pharmacy and Technology 5 (2013) 2764-2786.
  • [12] Mogoşanu G.D., Popescu F.C., Busuioc C.J., Pârvǎnescu H., Lascǎr I.: Natural products locally modulators of the cellular respon-se: Therapeutic perspectives in skin burns. Romanian Journal of Morphology and Embryology 53 (2012) 249-262.
  • [13] Guerra L., Dellambra E., Panacchia L., Paionni E.: Tissue Engineering for Damaged Surface and Lining Epithelia: Stem Cells, Current Clinical Applications, and Available Engineered Tissues. Tissue Engineering Part B: Reviews 15 (2009) 91-112.
  • [14] Maitz M.F.: Applications of synthetic polymers in clinical medicine. Biosurface and Biotribology 1 (2015) 161-176.
  • [15] Zilberman M., Elsner J.J.: Antibiotic-eluting medical devices for various applications. Journal of Controlled Release 130 (2008) 202-215.
  • [16] Atiyeh B.S., Hayek S.N., Gunn S.W.: New technologies for burn wound closure and healing - Review of the literature. Burns 31 (2005) 944-956.
  • [17] Loh Q.L., Choong C., Oxon D., Hons M., Mimmm C.: Three--Dimensional Scaffolds for Tissue Engineering Applications. Tissue Engineering Part B 19 (2013) 485-502.
  • [18] Julie G., Shuichi M.: Collagen scaffolds for tissue engineering. Biopolymers 89 (2008) 338-344.
  • [19] Xu Y., Han J., Lin H.: Fabrication and characterization of a self--crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohydrate Polymers 156 (2017) 372-379.
  • [20] Merlin Rajesh Lal L.P., Suraishkumar G.K., Nair P.D.: Chitosan--agarose scaffolds supports chondrogenesis of Human Wharton’s Jelly mesenchymal stem cells. Journal of Biomedical Materials Research - Part A 105 (2017) 1845-1855.
  • [21] Felfel R.M., Gideon-Adeniyi M.J., Zakir Hossain K.M., Roberts G.A.F., Grant D.M.: Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydrate Polymers 204 (2019) 59-67.
  • [22] Internetional Standard ISO 10993-5 Biologiczna ocena wyrobów medycznych – Część 5: Badania cytotoksyczności in vitro 2009.
  • [23] Salerno A., Netti P.A.: Introduction to biomedical foams, publ. Woodhead Publishing Limited, Italy 2014
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e736ece5-a27f-408d-9881-dda0c45b541f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.