PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Novel pla composites modified with steel fibres and (3-thiopropyl) polysilsesquioxane derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, a significant increase in the development of new composite materials with desirable mechanical, thermal or surface properties has been observed. One of the popular polymers on the market is polylactide. This article explores how to modify the polymer using steel fibres and organosilicon compounds (SSQ-SH, SSQ-SH-OCT, and SSQ-SH-OFP) to enhance its properties. Test samples were obtained by injection molding with varying concentrations of 0.5%, 1%, 1.5%, 2.5%, and 5% of steel fibres. Mechanical tests, including tensile strength, elongation at break, and impact strength, were conducted, along with an analysis of the contact angle. The modified samples showed higher impact strength values, with the PLA /steel fibres /SSQ-SH sample seeing an increase of 12%. The addition of modifiers with fluoroalkyl groups led to a contact angle increase of 8.5% compared to neat PLA. Thermal tests (TGA) were also carried out to determine the influence of fibres and organosilicon compounds on decomposition.
Rocznik
Strony
707--713
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytet Poznański 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznan, Centre for Advanced Technologies, Uniwersytet Poznański 10, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytet Poznański 8, 61-614 Poznań, Poland
  • Institute of Mechanical Engineering, Białystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytet Poznański 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznan, Centre for Advanced Technologies, Uniwersytet Poznański 10, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytet Poznański 8, 61-614 Poznań, Poland
Bibliografia
  • 1. Madhavan Nampoothiri K, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. 2010; 101(22):8493–501. https://doi.org/10.1016/j.biortech.2010.05.092
  • 2. Raquez JM, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11):1504–42. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  • 3. Anderson K, Schreck K, Hillmyer M. Toughening Polylactide. Poly-mer Reviews. 2008; 48(1):85–108. https://doi.org/10.1080/15583720701834216
  • 4. Farah S, Anderson DG, Langer R. Physical and mechanical proper-ties of PLA, and their functions in widespread applications — A com-prehensive review. Advanced Drug Delivery Reviews. 2016;107:367–92. https://doi.org/10.1016/j.addr.2016.06.012
  • 5. Notta-Cuvier D, Odent J, Delille R, Murariu M, Lauro F, Raquez JM, et al. Tailoring polylactide (PLA) properties for automotive applica-tions: Effect of addition of designed additives on main mechanical properties. Polymer Testing. 2014; 36:1–9. https://doi.org/10.1016/j.polymertesting.2014.03.007
  • 6. Swetha TA, Bora A, Mohanrasu K, Balaji P, Raja R, Ponnuchamy K, et al. A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging, International Journal of Biological Macromolecules. 2023; 234:123715. https://doi.org/10.1016/j.ijbiomac.2023.123715
  • 7. Claudio L. Waste Couture: Environmental Impact of the Clothing Industry. Environmental health perspectives. 2007;115(9):448–54. https://doi.org/10.1289/ehp.115-a449
  • 8. Wang J, Yu J, Bai D, Li Z, Liu H, Li Y, et al. Biodegradable, Flexible, and Transparent Conducting Silver Nanowires/Polylactide Film with High Performance for Optoelectronic Devices. Polymers. 2020;12(3):604. https://doi.org/10.3390/polym12030604
  • 9. Kale G, Auras R, Singh S, Narayan R, Biodegradability of polylactide bottles in real and simulated composting conditions Polymer Testing. 2007; 26 (8):1049-1061. https://doi.org/10.1016/j.polymertesting.2007.07.006.
  • 10. Abdelrazek Sh, Abou Taleb E, Mahmoud A, Hamouda T. Utilization of Polylactic Acid (PLA) in Textile Food Packaging: A Review". Egyp-tian Journal of Chemistry. 2021;65(3): 725 – 738.
  • 11. Sikorska W, Rydz J, Wolna-Stypka K, Musioł M, Adamus G, Kwie-cień I, et al. Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers. 2017;9(12):257. https://doi.org/10.3390/polym9070257
  • 12. Bergström JS, Hayman D. An Overview of Mechanical Properties and Material Modeling of Polylactide (PLA) for Medical Applications. Annals of Biomedical Engineering. 2015;44(2):330–40. https://doi.org/10.1007/s10439-015-1455-8
  • 13. Ajioka M, Enomoto K, Suzuki K, Yamaguchi A. Basic Properties of Polylactic Acid Produced by the Direct Condensation Polymerization of Lactic Acid. Bulletin of the Chemical Society of Japan. 1995;68(8):2125–31. https://doi.org/10.1246/bcsj.68.2125
  • 14. Julio César Velázquez-Infante, J. Gámez-Pérez, Adrian E, Santana OO, Carrasco F, M. Ll. Maspoch. Effect of the unidirectional drawing on the thermal and mechanical properties of PLA films with different L-isomer content. 2012;127(4):2661–9. https://doi.org/10.1002/app.37546
  • 15. Bai H, Deng S, Bai D, Zhang Q, Fu Q. Recent Advances in Pro-cessing of Stereocomplex-Type Polylactide. Macromolecular Rapid Communications. 2017;38(23):1700454. https://doi.org/doi:10.1002/marc.201700454
  • 16. Su S, Kopitzky R, Tolga S, Kabasci S. Polylactide (PLA) and Its Blends with Poly(butylene succinate) (PBS): A Brief Review. Poly-mers. 2019;11(7):1193. https://doi.org/10.3390/polym11071193
  • 17. Piekarska K, Piorkowska E, Bojda J. The influence of matrix crystal-linity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polymer Testing. 2017; 62:203–209. https://doi.org/10.1016/j.polymertesting.2017.06.025
  • 18. Dobrosielska M, Dobrucka R, Brząkalski D, Frydrych M, Kozera P, Wieczorek M, et al. Influence of Diatomaceous Earth Particle Size on Mechanical Properties of PLA/Diatomaceous Earth Composites. Ma-terials. 2022;15(10):3607. https://doi.org/10.3390/ma15103607
  • 19. Pilla S, Gong S, O’Neill E, Yang L, Rowell RM. Polylactide-recycled wood fiber composites. Journal of Applied Polymer Science. 2009;111(1):37–47. https://doi.org/10.1002/app.28860
  • 20. Mihai M, Ton-That MT. Novel bio-nanocomposite hybrids made from polylactide/nanoclay nanocomposites and short flax fibers. Journal of Thermoplastic Composite Materials. 2017;32(1):3–28. https://doi.org/10.1002/pen.23575
  • 21. Sabzoi Nizamuddin, Jadhav A, Sundus Saeed Qureshi, Humair Ahmed Baloch, M. Minhaj Siddiqui, Nabisab Mujawar Mubarak, et al. Synthesis and characterization of polylactide/rice husk hydrochar composite. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-41960-1
  • 22. Chanklom P, Kreetachat T, Chotigawin R, Suwannahong K. Photo-catalytic Oxidation of PLA/TiO2-Composite Films for Indoor Air Puri-fication. ACS Omega. 2021;6(16):10629–36. https://doi.org/10.1021/acsomega.0c06194
  • 23. Sztorch B, Pakuła D, Kustosz M, Romanczuk-Ruszuk E, Gabriel E, Przekop RE. The Influence of Organofunctional Substituents of Spherosilicates on the Functional Properties of PLA/TiO2 Compo-sites Used in 3D Printing (FDM/FFF). Polymers. 2022;14(24):5493. https://doi.org/10.3390/polym14245493
  • 24. Sun Y, Zheng Z, Wang Y, Yang B, Wang J, Mu W. PLA composites reinforced with rice residues or glass fiber—a review of mechanical properties, thermal properties, and biodegradation properties. Jour-nal of Polymer Research. 2022;29(10). https://doi.org/10.1007/s10965-022-03274-1
  • 25. Browne MP, Pumera M. Impurities in graphene/PLA 3D-printing filaments dramatically influence the electrochemical properties of the devices. Chemical Communications. 2019;55(58):8374–7. https://doi.org/10.1039/c9cc03774h
  • 26. Kjelgård KG, Wisland DT, Lande TS. 3D Printed Wideband Micro-wave Absorbers using Composite Graphite/PLA Filament. 48th Eu-ropean Microwave Conference (EuMC). Madrid Spain. 2018;859-862. https://doi.org/10.23919/EuMC.2018.8541699
  • 27. Jiang D, Ning F. Fused Filament Fabrication of Biodegradable PLA/316L Composite Scaffolds: Effects of Metal Particle Content. Procedia Manufacturing. 2020; 48, 755–762. https://doi.org/10.1016/j.promfg.2020.05
  • 28. Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D printed PLA‐Stainless Steel Polymeric Composite through Fused Deposition Modeling based Additive Manufacturing Process for Biomedical Applications. Medical devices & sensors. 2020;00:e10080. https://doi.org/10.1002/mds3.10080
  • 29. Mohammadizadeh M, Lu H, Fidan I, Tantawi K, Gupta A, Hasanov S, Zhang Z, Alifui-Segbaya F, Rennie A. Mechanical and Thermal Anal-yses of Metal-PLA Components Fabricated by Metal Material Extrusion. Inventions. 2020;5(3):44. doi:10.3390/inventions5030044
  • 30. Clarke AJ. Dickson A, Dowling DP. Fabrication and Performance of Continuous 316 Stainless Steel Fibre-Reinforced 3D-Printed PLA Composites. Polymers 2024; 16: (63). https://doi.org/10.3390/polym16010063
  • 31. Clarke A, Dickson A, Dowling DP. Additive manufacturing of rein-forced polymer composites with stainless steel fibre. Proceedings of the 38th International Manufacturing Conference (IMC38) 2022-08-30. University College Dublin. School of Mechanical and Materials Engineering;
  • 32. Pušnik Črešnar K, Aulova A, Bikiaris DN, Lambropoulou D, Kuzmič K, Fras Zemljič L. Incorporation of Metal-Based Nanoadditives into the PLA Matrix: Effect of Surface Properties on Antibacterial Activity and Mechanical Performance of PLA Nanoadditive Films. Molecules. 2021;26(14):4161. https://doi.org/10.3390/molecules26144161
  • 33. Raquez J-M, Habibi Y, Murariu M, Dubois P. Polylactide (PLA)-based nanocomposites. Progress in Polymer Science. 2013;38(10-11): 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  • 34. Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing. 2010;41(7):806–19. https://doi.org/10.1016/j.compositesa.2010.03.005
  • 35. Brząkalski D, Sztorch B, Frydrych M, Pakuła D, Dydek K, Kozera R, et al. Limonene Derivative of Spherosilicate as a Polylactide Modifier for Applications in 3D Printing Technology. Molecules. 2020;25(24):5882. https://doi.org/10.3390/molecules25245882
  • 36. Shen C, Han Y, Wang B, Tang J, Chen H, Lin,Q. Ocular biocompat-ibility evaluation of POSS nanomaterials for biomedical material ap-plications. RSC Advances. 2015;5(66):53782–53788. https://doi.org/10.1039/c5ra08668j
  • 37. Sztorch B, Brząkalski D, Pakuła D, Frydrych M, Špitalský Z, Przekop RE. Natural and Synthetic Polymer Fillers for Applications in 3D Printing——FDM Technology Area. Solids. 2022;3(3):508-548. https://doi.org/10.3390/solids3030034
  • 38. Maciejewski H, Karasiewicz J, Marciniec B. Efektywna synteza fluorofunkcyjnych (poli)siloksanów. Polimery. 2012;57,6:449–55.
  • 39. Dumitriu AC, Cazacu M, Bargan A, Balan M, Vornicu N, Varganici CD, et al. Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. Journal of Organometallic Chemistry. 2015;799-800:195–200. https://doi.org/10.1016/j.jorganchem.2015.09.025
  • 40. Feher FJ, Wyndham KD, Soulivong D, Nguyen F. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12). Journal of the Chemical Society. Dalton Transac-tions.1999;(9):1491–8. https://doi.org/10.1039/a807302c
  • 41. Pakuła D, Przekop R, Brząkalski D, Frydrych M, Sztorch B, Marciniec B. Sulfur-Containing Silsesquioxane Derivatives Obtained by the Thiol-ene Reaction: Synthesis and Thermal Degradation. ChemPlusChem. 2022;87:e202200099. https://doi.org/10.1002/cplu.202200099
  • 42. Pakuła D, Sztorch B, Romańczuk-Ruszuk E, Marciniec B, Przekop RE, High impact polylactide based on organosilicon nucleation agent. Chinese Journal of Polymer Science. 2024;42,787–797. https://doi.org/ 10.1007/s10118-024-3095-7
  • 43. Kuentz L, Salem A, Singh M, Halbig MC, SalemJA. Additive Manu-facturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements. National Aeronautics and Space Administration, https://ntrs.nasa.gov/citations/20160010284
  • 44. Safandowska M, Różański A, Gałȩski A. Plasticization of Polylactide after Solidification: An Effectiveness and Utilization for Correct Inter-pretation of Thermal Properties. Polymers. 2020;12(3):561. https://doi.org/10.3390/polym12030561
  • 45. Sztorch B, Romańczuk-Ruszuk E, Gabriel E, Pakuła D, Kozera R, Przekop RE. Metal and metal oxide particles as modifiers for effec-tive layer melting and Z-axis strength in 3D printing. Polymer. 2024;294:126684. https://doi.org/10.1016/j.polymer.2024.126684
  • 46. Klecker C, Nair LS. Matrix Chemistry Controlling Stem Cell Behavior. Biology and Engineering of Stem Cell Niches. 2017;195–213. https://doi.org/10.1016/b978-0-12-802734-9.00013-5
  • 47. Karasiewicz J, Dutkiewicz A, Maciejewski H. Fluorokarbofunkcyjne silany jako prekursory materiałów silnie hydrofobowych. Chemik. 2014;68(11): 945–956.
  • 48. Weishuai Di, Wang X, Zhou Y, Mei Y, Wang W, Cao Y. Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Mi-croscopic Level. Chinese Phys. Lett. 2022;39(3):038701. https://doi.org/10.1088/0256-307X/39/3/038701
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e7350a34-78b7-4497-ad27-ad6c04500fff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.