PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the influence of the supply pressure on functional parameters of the impulse low-pressure gas-phase injector

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents research results referring to the influence of supply pressure on the functional parameters of the impulse low-pressure gas-phase injector. The study was done on the original stand for flow test of gas-phase injectors. In the indirect evaluation, with the initial parameters and the length of the forced impulse, the current line, acceleration and pressure sensor courses were used. Apart from the volumetric flow rate, the analysed parameters were the time periods of the injector opening and closing process. Those time segments were composed of response time and opening/closing time, the sum of which gives time of full opening. Functional relationships describing the volumetric flow rate, time of full opening and closing are presented, which are helpful not only in comparative tests of different injectors, but also in modelling the operation of gas injector or algorithms of gas supply control system. The reference to the volumetric flow rate allowed to indicate possible causes of variability of this parameter depending on the supply pressure.
Rocznik
Strony
180--185
Opis fizyczny
Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, 45C Wiejska Str., 15-351 Bialystok, Poland
  • Doctoral School, Bialystok University of Technology, 45A Wiejska Str., 15-351 Bialystok, Poland
  • Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt
  • Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
  • Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
  • Higher Institute for Engineering and Technology, New Damietta, Egypt
Bibliografia
  • 1. AC (2020), STAG Autogas Section. Retrieved May 10, 2020, from https://www.ac.com.pl/en.
  • 2. Aleiferis P. G., Serras-Pereira J., Augoye A., Davies T. J., Crack-nell R. F., Richardson D. (2010), Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and al-cohols from a real-size optical injector for direct-injection spark-ignition engines, International Journal of Heat and Mass Transfer, 53(21–22): 4588–4606.
  • 3. Aleiferis P. G., Van Romunde Z. R. (2013), An analysis of spray development with iso-octane, n-pentane, gasoline, ethanol and n-butanol from a multi-hole injector under hot fuel conditions, Fuel, 105: 143–168.
  • 4. Ambrozik A., Kurczyński D. (2008), Analysis of fast-changing quantities in the AD3.152 UR engine running of mineral fuel, plant fuel and their blends, Motrol, 10: 11–22.
  • 5. Baldi F., Theotokatos G., Andersson K. (2015), Development of a combined mean value-zero dimensional model and application for a large marine four-stroke Diesel engine simulation, Applied Energy 154: 402–415.
  • 6. Bensetti M., Le Bihan Y., Marchand C. (2006), Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators, Sensors and Actuators, A: Physical, 129(1–2): 207–211.
  • 7. Borawski A., Szpica D., Mieczkowski G., Awad M. M., Shalby R. M., Sallah M. (2021), Simulation study of the vehicle braking process with temperature dependent coefficient of friction between brake pad and disc, Heat Transfer Research, 52(2): 1-11.
  • 8. Borawski A., Szpica D., Mieczkowski G., Borawska E., Awad M. M., Shalby R. M., Sallah M. (2020), Theoretical analysis of the mo-torcycle front brake heating process during high initial speed emer-gency braking, Journal of Applied and Computational Mechanics, 6(SI): 1431–1437.
  • 9. Broatch A., Olmeda P., Margot X., Escalona J. (2019), New ap-proach to study the heat transfer in internal combustion engines by 3D modelling, International Journal of Thermal Sciences, 138: 405–415.
  • 10. Brumercik F., Lukac M., Caban J., Krzysiak Z., Glowacz A. (2020), Comparison of selected parameters of a planetary gearbox with involute and convex-concave teeth flank profiles, Applied Sci-ences (Switzerland), 10(4): 1417.
  • 11. Buhl S., Gleiss F., Köhler M., Hartmann F., Messig D., Brücker C., Hasse C. (2017), A combined numerical and experimental study of the 3D tumble structure and piston boundary layer development during the Intake stroke of a gasoline engine, Flow, Turbulence and
  • Combustion, 98: 579–600.
  • 12. Cerri T., Onorati A., Mattarelli E. (2006), 1D engine simulation of a small HSDI diesel engine applying a predictive combustion model, Journal of Engineering for Gas Turbines, 130(1): 012802.
  • 13. Clairotte M., Suarez-Bertoa R., Zardini A. A., Giechaskiel B., Pavlovic J., Valverde V., Ciuffo B., Astorga C. (2020), Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles, Environmental Sciences Europe, 32(1): 125.
  • 14. Council of the European Union (2014), Council Directive 2014/94/EU of 22 October 2014 on the deployment of alternative fuels infrastructure. In Official Journal of the European Union.
  • 15. Czarnigowski J. (2010), The impact of supply pressure on gas injector expenditure characteristics, Silniki Spalinowe, 49(2): 18–26.
  • 16. Czarnigowski J. (2012), Theoretical and empirical study of model-ling a pulse gas injector. Wydawnictwo Politechniki Lubelskiej, Lublin.
  • 17. Czarnigowski J. (2014), Experiments on the effect of pressure and voltage supply on pulse injector opening time, SAE Technical Pa-pers, 2014-01-2560.
  • 18. Czarnigowski J., Jakliński P., Wendeker M., Pietrykowski K., Grabowski Ł. (2009), The analyses of the phenomena inside a CNG flap-valve injector during gas flow, Combustion Engines, 136(1): 10–18.
  • 19. Czarnigowski J., Wendeker M., Jakliński P., Rola M., Grabowski Ł., Pietrykowski K. (2007), CFD model of fuel rail for LPG systems, SAE Technical Papers, 2007-01-2053.
  • 20. Da Silva Trindade W. R., Dos Santos R. G. (2016), Combustion modeling applied to engines using a 1D simulation code, SAE Tech-nical Papers, 2016-36-0347.
  • 21. Duk M., Czarnigowski J. (2012), The method for indirect identifica-tion gas injector opening delay time, Przeglad Elektrotechniczny, 88(10 B): 59–63.
  • 22. Dziewiątkowski M., Szpica D., Borawski A. (2020), Evaluation of impact of combustion engine controller adaptation process on level of exhaust gas emissions in gasoline and compressed natural gas sup-ply process, Engineering for Rural Development, 19: 541–548.
  • 23. Feng Y., Wang H., Gao R., Zhu Y. (2019), A zero-dimensional mixing controlled combustion model for real time performance simu-lation of marine two-stroke diesel engines, Energies, 12(10): 2000.
  • 24. García A., Monsalve-Serrano J., Villalta D., Guzmán-Mendoza M. (2020), Methanol and OMEx as fuel candidates to fulfill the potential EURO VII emissions regulation under dual-mode dual-fuel combus-tion, Fuel, 287: 119548.
  • 25. Jang C., Kim S., Choi S. (2000), An experimental and analytical study of the spray characteristics of an intermittent air-assisted fuel injector, Atomization and Sprays, 10(2): 199–217.
  • 26. Kakuhou A., Urushihara T., Itoh T., Takagi Y. (1999), Characteris-tics of mixture formation in a direct injection SI engine with optimized in-cylinder swirl air motion, Journal of Engines, 108: 550–558.
  • 27. Kim H. J., Lee S. H., Kwon S. I., Park S., Lee J., Keel J. H., Lee J. T., Park S. (2020), Investigation of the emission characteristics of light-duty diesel vehicles in korea based on EURO-VI standards ac-cording to type of after-treatment system, Energies, 13(18): 4936.
  • 28. Kosmadakis G. M., Rakopoulos C. D., Demuynck J., De Paepe M., Verhelst S. (2012), CFD modeling and experimental study of combustion and nitric oxide emissions in hydrogen-fueled spark-ignition engine operating in a very wide range of EGR rates, Interna-tional Journal of Hydrogen Energy, 37(14): 10917–10934.
  • 29. Leach B., Zhao H., Li Y., Ma T. (2007), Two-phase fuel distribution measurements in a gasoline direct injection engine with an air-assisted injector using advanced optical diagnostics, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automo-bile Engineering, 221(6): 663–673.
  • 30. Marčič S., Marčič M., Praunseis Z. (2015), Mathematical model for the injector of a common rail fuel-injection system, Engineering, 7: 307–321.
  • 31. Mieczkowski G. (2019), Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoe-lectric layers, Acta Mechanica et Automatica, 13(1): 30–36.
  • DOI 10.2478/ama-2020-0026 acta mechanica et automatica, vol.14 no.4 (2020)
  • 185
  • 32. Mieczkowski G., Borawski A., Szpica D. (2020), Static electrome-chanical characteristic of a three-layer circular piezoelectric trans-ducer, Sensors (Switzerland), 20(1), 222.
  • 33. Mohammadi A., Jazayeri A., Ziabasharhagh M. (2012), Numerical simulation of direct injection engine with using porous medium, Pro-ceedings of the Spring Technical Conference of the ASME Internal Combustion Engine Division, ICES2012-81150, pp. 785–795.
  • 34. Ngayihi Abbe C. V., Nzengwa R., Danwe R., Ayissi Z. M., Obonou M. (2015), A study on the 0D phenomenological model for diesel en-gine simulation: Application to combustion of Neem methyl esther bi-odiesel, Energy Conversion and Management, 89: 568–576.
  • 35. Panão M. R. O., Moreira A. L. N. (2005), Flow characteristics of spray impingement in PFI injection systems, Experiments in Fluids, 39(2): 364–374.
  • 36. Passarini L. C., Nakajima P. R. (2003), Development of a high-speed solenoid valve: an investigation of the importance of the arma-ture mass on the dynamic response, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(4): 329–335.
  • 37. Passarini L. C., Pinotti M. (2003), A new model for fast-acting electromagnetic fuel injector analysis and design, Journal of the Bra-zilian Society of Mechanical Sciences and Engineering, 25(1): 95–106.
  • 38. Pogulyaev Y. D., Baitimerov R. M., Rozhdestvenskii Y. V. (2015), Detailed dynamic modeling of common rail piezo injector, Procedia Engineering, 129: 93–98.
  • 39. Polášek M., Macek J., Takáts M., Vítek O. (2002), Application of advanced simulation methods and their combination with experi-ments to modeling of hydrogen fueled engine emission potentials, SAE Technical Papers, 2002-01-0373.
  • 40. Raslavičius L., Azzopardi B., Keršys A., Starevičius M., Bazaras Ž., Makaras R. (2015), Electric vehicles challenges and opportuni-ties: Lithuanian review, Renewable and Sustainable Energy Reviews, 42: 786–800.
  • 41. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68: 380–396.
  • 42. Raslavičius L., Keršys A., Mockus S., Keršiene N., Starevičius M. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable and Sus-tainable Energy Reviews, 32: 513–525.
  • 43. Robart D., Breuer S., Reckers W., Kneer R. (2001), Assessment of pulsed gasoline fuel sprays by means of qualitative and quantitative laser-based diagnostic methods, Particle and Particle Systems Char-acterization, 18(4): 179–189.
  • 44. Satkoski C. A., Shaver G. M., More R., Meckl P., Memering D. (2009), Dynamic modeling of a piezoelectric actuated fuel injector, IFAC Proceedings Volumes, 42(26): 235–240.
  • 45. Sawant P., Bari S. (2017), Combined effects of variable intake manifold length, variable valve timing and duration on the perfor-mance of an internal combustion engine, ASME International Me-chanical Engineering Congress and Exposition, Proceedings (IMECE), IMECE2017-70470, V006T08A052.
  • 46. Sawant Pauras, Warstler M., Bari S. (2018), Exhaust tuning of an internal combustion engine by the combined effects of variable ex-haust pipe diameter and an exhaust valve timing system, Energies,
  • 11(6): 1545.
  • 47. Serras-Pereira J., Aleiferis P. G., Walmsley H. L., Davies T. J., Cracknell R. F. (2013), Heat flux characteristics of spray wall im-pingement with ethanol, butanol, iso-octane, gasoline and E10 fuels, International Journal of Heat and Fluid Flow, 44: 662–683.
  • 48. Szpica D. (2015), Simplified numerical simulation as the base for throttle flow characteristics designation, Mechanika, 21(2): 129–133.
  • 49. Szpica D. (2016), The influence of selected adjustment parameters on the operation of LPG vapor phase pulse injectors, Journal of Nat-ural Gas Science and Engineering, 34: 1127–1136.
  • 50. Szpica D. (2018), Validation of indirect methods used in the opera-tional assessment of LPG vapor phase pulse injectors, Measure-ment: Journal of the International Measurement Confederation, 118: 253–261.
  • 51. Szpica D., Czaban J. (2014), Operational assessment of selected gasoline and LPG vapour injector dosage regularity, Mechanika, 20(5): 480–488.
  • 52. Szpica D., Kusznier M. (2020), Modelling of the low pressure gas injector operation, Acta Mechanica et Automatica, 14(1(51)): 29–35.
  • 53. Taghizadeh M., Ghaffari A., Najafi F. (2009), Modeling and identifi-cation of a solenoid valve for PWM control applications, Comptes Rendus – Mecanique, 337(3): 131–140.
  • 54. Walaszyk A., Busz W. (2013), Application of optical method for the analysis delay between control injector coil and beginning of the fuel injection, Combustion Engines, 154(3): 1038–1041.
  • 55. Waluś K. J., Warguła Ł., Krawiec P., Adamiec J. M. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery—the case study for Europe: a review, Environmental Sci-ence and Pollution Research, 25(4): 3243–3259.
  • 56. Warguła Ł., Kukla M., Lijewski P., Dobrzyński M., Markiewicz F. (2020), Influence of the use of Liquefied Petroleum Gas (LPG) sys-tems in woodchippers powered by small engines on exhaust emis-sions and operating costs, Energies, 13: 5773.
  • 57. Warguła Ł., Kukla M., Lijewski P., Dobrzyński M., Markiewicz F. (2020a), Impact of Compressed Natural Gas (CNG) fuel systems in small engine wood chippers on exhaust emissions and fuel con-sumption, Energies, 13(24): 6709.
  • 58. Warguła L., Waluś K. J., Krawiec, P. (2018), Small engines spark ignited (SI) for non-road mobile machinery- Review. Transport Means - Proceedings of the International Conference, 2018-Octob, 585–591.
  • 59. WLTP (2019). WLTP lab test. Retrieved November 1, 2019, from http://wltpfacts.eu/.
  • 60. Yang W. Y., Cao W., Chung T.-S., Morris J. (2005), Applied Numer-ical Methods U
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e733eeaf-e4fd-4597-9de3-5ff1a9f258de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.