Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The main goal of the work was to find the interconnection between the high-frequency magnetron sputtering parameters and the adhesion properties of CaP coatings formed on the surface of titanium substrate. Methods: Calcium-phosphate coatings, similar in composition to hydroxyapatite, were generated by high-frequency magnetron sputtering on titanium substrate at different values of high-frequency specific power over times of one and two hours. Afterwards, the generated coatings were studied using the method of X-ray phase analysis, and sclerometric tests (scratch test) were carried out. The adhesion strength of the deposited coatings was tested for different coating thicknesses from 0.45 to 1.1 x 10–3 mm. Results: According to the results of sclerometry, it was found that with an increase in the high-frequency specific power of plasma to 3.15 W/cm2 , the adhesion strength of the calcium-phosphate coating also increases. For all the coatings, the critical loads at which the coating completely exfoliated from the substrate were determined. Conclusions: According to the research results, the most optimal conditions for obtaining high-adhesive calcium-phosphate coatings were determined.
Czasopismo
Rocznik
Tom
Strony
111--120
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Satbayev University, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan
autor
- Satbayev University, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan
autor
- Satbayev University, Institute of Metallurgy and Ore Beneficiation, Almaty, Kazakhstan
autor
- National Research Tomsk Polytechnic University, Tomsk, Russian Federation
autor
- Wrocław University of Science and Technology, Faculty of Mechanical Engineering, ul. Łukasiewicza 5, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Wrocław, Poland
Bibliografia
- [1] ALSARAN A., PURCEK G., HACISALIHOGLU I., VANGOLU Y., BAYRAK Ö., KARAMAN I., CELIK A., Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment, Surf. Coatings Technol., 2011, 205, S537–S542.
- [2] ASRI R.I.M., HARUN W.S.W., HASSAN M.A., GHANI S.A.C., BUYONG Z., A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals, J. Mech. Behav. Biomed. Mater., 2016, 57, 95–108.
- [3] BEHERA R.R., DAS A., PAMU D., PANDEY L.M., SANKAR M.R., Mechano-tribological properties and in vitro bioactivity of biphasic calcium phosphate coating on Ti-6Al-4V, J. Mech. Behav. Biomed. Mater., 2018, 86, 143–157.
- [4] CATAURO M., PAPALE F., SAPIO L., NAVIGLIO S., Biological influence of Ca/P ratio on calcium phosphate coatings by sol-gel processing, Mater. Sci. Eng. C., 2016, 65, 188–193.
- [5] CHANDRAMOHAN D., MARIMUTHU K., Characterization of natural fibers and their application in bone grafting substitutes, Acta Bioeng. Biomech., 2011, 13.
- [6] FEDOTKIN A.Y., BOLBASOV E.N., KOZELSKAYA A.I., DUBINENKO G., SHESTERIKOV E.V., ASHRAFOV A., TVERDOKHLEBOV S.I., Calcium phosphate coating deposition by radio frequency magnetron sputtering in the various inert gases: The pilot study, Mater. Chem. Phys., 2019, 121735.
- [7] GRYGIER D., DUDZIŃSKI W., RUTKOWSKA-GORCZYCA M., The perspective of sol-gel technology in the development of coatings on medical implants, Eng. Biomater., 2010, 13.
- [8] JIN S., ZHANG Y., WANG Q., ZHANG D., ZHANG S., Influence of TiN coating on the biocompatibility of medical NiTi alloy, Colloids Surfaces B. Biointerfaces, 2013, 101, 343–349.
- [9] KENZHEGULOV А.K., MAMAYEVA А.А., PANICHKIN А.V., Adhesion properties of calcium-phosphate coatings on titanium, J. Complex use of mineral resources, 2017, 3, 35–41 (in Russian).
- [10] KOBIELARZ M., GAZIŃSKA M., TOMANIK M., STĘPAK B., SZUSTAKIEWICZ K., FILIPIAK J., ANTOŃCZAK A., PEZOWICZ C., Physicochemical and mechanical properties of CO2 lasermodified biodegradable polymers for medical applications, Polym. Degrad. Stab., 2019, 165, 182–195.
- [11] KRZAK-ROŚ J., FILIPIAK J., PEZOWICZ C., BASZCZUK A., MILLER M., KOWALSKI M., BĘDZIŃSKI R., The effect of substrate roughness on the surface structure of TiO2, SiO2, and doped thin films prepared by the sol-gel method, Acta Bioeng. Biomech., 2009, 11, 21–29.
- [12] KUCHARCZYK A., NAPLOCHA K., TOMANIK M., Processing of porous NiTi preforms for NiTi/Mg composites, Arch. Metall. Mater., 2019, 64, 747–752.
- [13] LACEFIELD W.R., Hydroxylapatite coatings, [in:] Introd. to Bioceram., World Scientific, 1993, 223–238.
- [14] ŁĘCKA K.M., ANTOŃCZAK A.J., KOWALEWSKI P., TRZCIŃSKI M., Wear resistance of laser-induced annealing of AISI 316 (EN 1.4401) stainless steel, Laser Phys., 2018, 28, 096005. https://doi.org/10.1088/1555-6611/aac507.
- [15] MAMAEVA A., KENZHEGULOV A., KOWALEWSKI P., WIELEBA W., Investigation of hydroxyapatite-titanium composite properties during heat treatment, Acta Bioeng. Biomech., 2017, 19. https://doi.org/10.5277/ABB-00800-2016-04.
- [16] PICHUGIN V.F., SURMENEV R.A., SHESTERIKOV E.V., RYABTSEVA M.A., ESHENKO E.V., TVERDOKHLEBOV S.I., PRYMAK O., EPPLE M., The preparation of calcium phosphate coatings on titanium and nickel-titanium by rfmagnetron-sputtered deposition: composition, structure and micromechanical properties, Surf. Coatings Technol., 2008, 202, 3913–3920.
- [17] SINGH L., CHAWLA V., GREWAL J.S., A review on detonation gun sprayed coatings, J. Miner. Mater. Charact. Eng., 2012, 11, 243.
- [18] SU Y., LI K., ZHANG L., LIU S., YUAN Y., HE S., Calcium phosphorus bio-coating on carbon/carbon composites: preparation, shear strength and bioactivity, Appl. Surf. Sci., 2017, 419, 503–511.
- [19] SUN L., BERNDT C.C., GROSS K.A., KUCUK A., Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review, J. Biomed. Mater. Res. An Off. J. Soc. Biomater. Japanese Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater., 2001, 58, 570–592.
- [20] SURMENEVA M.A., SHARONOVA A.A., CHERNOUSOVA S., PRYMAK O., LOZA K., TKACHEV M.S., SHULEPOV I.A., EPPLE M., SURMENEV R.A., Incorporation of silver nanoparticles into magnetron-sputtered calcium phosphate layers on titanium as an antibacterial coating, Colloids Surfaces B. Biointerfaces, 2017, 156, 104–113.
- [21] SURMENEVA M.A., MUKHAMETKALIYEV T.M., TYURIN A.I., TERESOV A.D., KOVAL N.N., PIROZHKOVA T.S., SHUVARIN I.A., SHUKLINOV A.V., ZHIGACHEV A.O., OEHR C. et al., Effect of silicate doping on the structure and mechanical properties of thin nanostructured RF magnetron sputter-deposited hydroxyapatite films, Surf. Coatings Technol., 2015, 275, 176–184.
- [22] TRYBUŚ B., ZIELIŃSKI A., BEUTNER R., SERAMAK T., SCHARNWEBER D., Deposition of phosphate coatings on titanium within scaffold structure, Acta Bioeng. Biomech., 2017, 19.
- [23] TSUI Y.C., DOYLE C., CLYNE T.W., Plasma sprayed hydroxyapatite coatings on titanium substrates, Part 1: Mechanical properties and residual stress levels, Biomaterials, 1998, 19, 2015–2029.
- [24] VALLI J., MÄKELÄ U., MATTHEWS A., MURAWA V., TiN coating adhesion studies using the scratch test method, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, 1985, 3, 2411–2414.
- [25] ZAMOUME O., THIBAULT S., REGNIÉ G., MECHERRI M.O., FIALLO M., SHARROCK P., Macroporous calcium phosphate ceramic implants for sustained drug delivery, Mater. Sci. Eng. C., 2011, 31, 1352–1356.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e72584d8-c38a-473f-9deb-f187ffa87d06