Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Short-circuit analysis is conducted based on the nodal impedance matrix, which is the inversion of the nodal admittance matrix. If analysis is conducted for sliding faults, then for each fault location four elements of the nodal admittance matrix are subject to changes and the calculation of the admittance matrix inversion needs to be repeated many times. For large-scale networks such an approach is time consuming and unsatisfactory. This paper proves that for each new fault location a new impedance matrix can be found without recalculation of the matrix inversion. It can be found by a simple extension of the initial nodal impedance matrix calculated once for the input model of the network. This paper derives formulas suitable for such an extension and presents a flowchart of the computational method. Numerical tests performed for a test power system confirm the validity and usefulness of the proposed method.
Rocznik
Tom
Strony
art. no. e135841
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Electrical Power Engineering Institute, Faculty of Electrical Engineering, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems, IEEE Std P493/D4, 2006.
- [2] J. Machowski, Z. Lubośny, J. Bialek, and J. Bumby, Power System Dynamics. Stability and Control, 3rd ed., John Wiley & Sons, Chichester, New York, 2020.
- [3] C. Fan, K. Xu, and Q. Liu, "Short-circuit current calculation method for partial coupling transmission lines under different voltage levels", Int. J. Electr. Power Energy Syst. 78, 647-654 (2016).
- [4] B. Dağ, A.R. Boynueğri, Y. Ateş, A. Karakaş, A. Nadar, and M. Uzunoğlu, "Static Modeling of Microgrids for Load Flow and Fault Analysis", IEEE Trans. Power Syst. 32(3), 1990-2000 (2017).
- [5] Ł. Nogal, S. Ribak, and J. Bialek: "Advances in electrical power engineering", Bull. Pol. Ac.: Tech. 68(4), 647-649 (2020).
- [6] H. Li, A. Bose and Y. Zhang, "On-line short-circuit current analysis and preventive control to extend equipment life", IET Generation, Transmission & Distribution 7 (1), 69-75 (2013).
- [7] S. Azizi and M. Sanaye-Pasand, "From Available Synchrophasor Data to Short-Circuit Fault Identity: Formulation and Feasibility Analysis", IEEE Transactions on Power Systems 32 (3), 2062- 2071 (2017).
- [8] V. A. Stanojević, G. Preston and V. Terzija, "Synchronised Measurements Based Algorithm for Long Transmission Line Fault Analysis”, IEEE Transactions on Smart Grid 9 (5), 4448- 4457 (2018).
- [9] T. Gonen, Modern Power System Analysis, 2th ed., CRC Press, 2013.
- [10] A. R. Bergen, and V. Vittal, Power System Analysis, 2th ed., Englewood Cliffs, NJ, USA: Prentice-Hall, 2000.
- [11] P.Kacejko, J.Machowski, Short-circuits in power systems (in Polish), PWN/WNT Warszawa 2017.
- [12] P. M. Anderson, Analysis of Faulted Power Systems, New York: IEEE Press, 1995.
- [13] A. H. El-Abiad, "Digital Calculation of Line-to-Ground Short Circuits by Matrix Method", Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems 79 (3), 323-331 (1960).
- [14] J.J. Grainger, W.D. Stevenson, JR, Power System Analysis,McGraw-Hill, New York, 1994.
- [15] T.A Davis, Direct methods for sparse linear systems, Society for Industrial and Applied Mathematics, 2006.
- [16] X. Luo et al., "An Efficient Second-Order Approach to Factorize Sparse Matrices in Recommender Systems", IEEE Transactions on Industrial Informatics 11 (4) 946-956 (2015).
- [17] X. Luo, M. Zhou, S. Li and M. Shang, "An Inherently Nonnegative Latent Factor Model for High-Dimensional and Sparse Matrices from Industrial Applications”, IEEE Transactions on Industrial Informatics 14 (5), 2011-2022 (2018).
- [18] M. R. Araújo, C.R Pereira, "A practical first-zone distance relaying algorithm for long parallel transmission lines", Electr. Power Syst. Res. 146, 17-24 (2017).
- [19] N. Abu Bakar, A. Mohamed, M. Ismail and N. Hamzah, "A voltage sag analysis software tool for determine areas of vulnerability," 2004 IEEE Region 10 Conference TENCON 2004., Chiang Mai, , pp. 299-302 (2004).
- [20] S. R. Naidu, G. V. de Andrade and E. G. da Costa, "Voltage Sag Performance of a Distribution System and Its Improvement", IEEE Transactions on Industry Applications 48 (1), 218-224 (2012).
- [21] D. Ma and L. Tian, "Practical fault location estimation based on voltage sags magnitude," 2016 China International Conference on Electricity Distribution (CICED), Xi'an, 1-5 (2016).
- [22] R. J. Gopi, V. K. Ramachandaramurthy and M. T. Au, "Analytical approach to stochastic assessment for balanced voltage sags and duration on transmission networks", 2009 10th International Conference on Electrical Power Quality and Utilisation, Lodz, 1-6 (2009).
- [23] NEPLAN Smarter Tools "Power System Analysis Software" NEPLAN AG Oberwachtstrasse 2 CH 8700 Küsnacht ZH, [Online]. Available https://www.neplan.ch/wpcontent/uploads/2015/01/Electricity.pdf.
- [24] A. Boboń, A. Nocoń, S. Paszek, P. Pruski, "Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm", Bull. Pol. Ac.: Tech. 65 (4), 479-488 (2017).
- [25] P. Kacejko, J. Machowski, "Application of the ShermanMorrison formula to short-circuit analysis of transmission networks with phase-shifting transformers", Electr. Power Syst. Res. 155, 289-295 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e717df9e-044f-4676-89aa-9dd551b31212