Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Stochastic uncertainty theory is used to develop a new Bingham model of magnetorheological dampers superior to the existing model. Some input variables are defined as stochastic variables by the stochastic factor method, and the stochastic Bingham model is developed by the algebraic synthesis method. Curves of the damping force obtained by the stochastic Bingham model and the Bingham model in the literature are compared with experimental results, revealing that the curves obtained by the stochastic Bingham model are much closer to the experimental curves. Therefore, we confirm that the stochastic Bingham model is superior to the model from the literature.
Czasopismo
Rocznik
Tom
Strony
53--65
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
autor
- School of Mechanical Engineering, Hefei University of Technology, Hefei, China
Bibliografia
- 1. Ahamed R., Ferdaus M.M., LI Y.C., 2016, Advancement in energy harvesting magnetorheological fluid damper: a review, Korea-Australia Rheology Journal, 28, 355-379.
- 2. Aguirre N., Ikhouane F., Rodellar J., Christenson R., 2012, Parametric identification of the Dahl model for large scale MR dampers, Structural Control and Health Monitoring, 19, 332-347.
- 3. Chen J.J., 1994, Reliability of Mechanical and Structural Systems (in Chinese), 1st ed., Xi-dian University Press, Xi’an.
- 4. Chen K., Yu X.P., Zheng H.M.,Wang Y.Y., Zhang G.J.,Wu R., 2018,Modeling dissipative heating of hydraulic dampers under consideration of stochastic uncertainties in their geometric parameters, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40, 312.
- 5. Deng Z.D., Gao F., Liu X.D., Xu G.Y., 2008, Theoretical calculation and testing of damping characteristics for magnetorheological damper on vehicle (in Chinese), Chinese Journal of Mechanical Engineering, 44, 202-207.
- 6. Du X.P., Chen H., Liu Z.J., Wang C., 2016, Semi-active control of space manipulator soft contacting based on magnetorheological rotational damper, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 230, 2390-2398.
- 7. Gan M.G., Qiao Z., Li Y.L., 2016, Sliding mode control with perturbation estimation and hysteresis compensator based on Bouc-Wen model in tackling fast-varying sinusoidal position control of a piezoelectric actuator, Journal of Systems Science and Complexity, 29, 367-381.
- 8. Hu G. L., Lu Y., Sun S.S., Li W.H., 2017, Development of a self-sensing magnetorheological damper with magnets in-line coil mechanism, Sensors and Actuators A: Physical, 255, 71-78.
- 9. Jia Y.S., Zhou K.K., 2009, Rheological properties analysis and experiment of magnetorheological fluid for automobile (in Chinese), Journal of Mechanical Engineering, 45, 246-250.
- 10. Liem D.T., Ahn K.K., 2016, Adaptive semi-parallel position/force-sensorless control of electrohydraulic actuator system using MR fluid damper, International Journal of Precision Engineering and Manufacturing, 17, 1451-1463.
- 11. Miah M.S., Chatzi E.N., Dertimanis V.K., Weber F., 2015, Nonlinear modeling of a rotational MR damper via an enhanced Bouc-Wen model, Smart Materials and Structures, 24, 105020.
- 12. Ou J.P., 2003, Structural Vibration Control-Active, Semi-Active and Intelligent Control (in Chinese), 1st ed., Science Press, Beijing.
- 13. Ou J.P., Guan X.C., 1999, Experiment study of magnetorheological damper performance, Earthquake Engineering and Engineering Vibration (in Chinese), 1st ed., Science Press, Beijing.
- 14. Sapiński B., Rosół M., Węgrzynowski M., 2016, Investigation of an energy harvesting MR damper in a vibration control system, Smart Materials and Structures, 25, 125017.
- 15.
- Shames I.H., Cozzarelli F.A., 1992, Elastic and Inelastic Stress Analysis, 1st ed., Englewood Cliffs: Prentice Hall, Englewood.
- 16. Spencer B.F., Dyke S.J., Sain M.K., Carlson J.D., 1997, Phenomenological model of a magnetorheological damper, Journal of Engineering Mechanics, 123, 230-238.
- 17. Stanway R., Sproston J.L., Stevens N.G., 1987, Non-linear modeling of an electro-rheological vibration damper, Journal of Electrostatics, 20, 167-184.
- 18. Sun S.S., Ning D.H., Yang J., Du H., Zhang S.W., Li W.H., 2016, A seat suspension with a rotary magnetorheological damper for heavy duty vehicles, Smart Materials and Structures, 25, 105032.
- 19. Tang X., Du H.P., Sun S.S., D. Ning H., Xing Z.W., Li W.H., 2017, Takagi-Sugeno fuzzy control for semi-active vehicle suspension with a magnetorheological damper and experimental validation, IEEE/ASME Transactions on Mechatronics, 22, 291-300.
- 20. Tao B.Q., 1997, Structure of Intelligent Material (in Chinese), 1st ed., National Defense Industry Press, Beijing.
- 21. Wen Y.K., 1976, Method for random vibration of hysteretic systems, Journal of the Engineering Mechanics Division, 102, 249-263.
- 22. Wereley N.M., Pang L., Kamath G.M., 1998, Idealized hysteresis modeling of electrorheological and magnetorheological damper, Journal of Intelligent Materials Systems and Structures, 9, 642-649.
- 23. Yang M.G., Cai C.S., 2015, Longitudinal vibration control for a suspension bridge subjected to vehicle braking forces and earthquake excitations based on magnetorheological dampers, Journal of Vibration and Control, 22, 1-20.
- 24. Zaman M.A., Sikder U., 2015, Bouc-Wen hysteresis model identification using modified firefly algorithm, Journal of Magnetism and Magnetic Materials, 395, 229-233.
- 25. Zhang X.C., Zhang X., Zhao Y.X., Zhao J., Xu Z.D., 2017, Experimental and numerical studies on a composite MR damper considering magnetic saturation effect, Engineering Structures, 132, 576-585.
Uwagi
„Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).”
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e716f249-bae6-4109-9e9f-4cb4bc721138