Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The manufacturing industry relies on continuous optimization to meet quality and safety standards, which is part of the Industry 4.0 concept. Predicting when a specific part of a product will fail to meet these standards is of utmost importance and requires vast amounts of data, which often is collected from variety of sensors, often reffered to as Industrial Internet of Things (IIoT). Using a published dataset from Bosch, that describes the process at every step of production, we aim to train a machine learning model that can accurately predict faults in the manufacturing process. The dataset provides two years of production data across four production lines and 52 stations. Considering that the data generated from each production part includes 4,264 features, we investigate various feature selection and data preprocessing methods. The obtained results exhibit AUC ROC of up to 0.997, which is remarkable and promising even for real-life production use.
Słowa kluczowe
Rocznik
Tom
Strony
291--296
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
Bibliografia
Uwagi
1. Main Track Short Papers
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e716941a-003e-41a3-b1b6-6d4775d6db57