PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-scale analysis of water alteration on the rockslope stability framework

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water is an important weathering factor on rock discontinuities and in rock mass mechanical behaviour because of its chemical features such as temperature, pH or salinity which make it a “good” candidate to rock degradation. Furthermore the increase of rainfall frequency or intensity highlights some problems on the rock slope stability analysis. This study aims to evaluate the effect of water flow on the rock slope stability and it is performed at two space scales: in situ scale and laboratory (micro scale and macro scale). It shows how water induces degradation at multi-scale (surface roughness and matrix) and thus may decrease the stability of the discontinuous rock mass. It has two main components: the effect of water-solid chemical mechanisms and the analysis of the mechanical response of the discontinuity modified by the water alteration.
Czasopismo
Rocznik
Strony
1025--1048
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
autor
  • National Competence Centre for Industrial Safety and Environmental Protection (INERIS), Verneuil en Halatte, France
autor
  • National Competence Centre for Industrial Safety and Environmental Protection (INERIS), Verneuil en Halatte, France
autor
  • National Competence Centre for Industrial Safety and Environmental Protection (INERIS), Verneuil en Halatte, France
autor
  • The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), Marne la Vallée, France
autor
  • The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), Marne la Vallée, France
autor
  • The French Institute of Science and Technology for Transport, Development and Networks (IFSTTAR), Marne la Vallée, France
autor
  • Centre National de la Recherche Sc ientifique (CNRS) , Orsay, France
Bibliografia
  • 1. Bachaud, P., P. Berne, F. Renard, M. Sardin, and J.P. Leclerc (2009), Caractérisa-tion pétrophysique de roches de couverture carbonatées pour le stockage de CO2en aquifères profonds. In:Actes du 12ème Congrès de la Société Française de Génie des Procédés, 14-16 octobre 2009, Marseille, France.
  • 2. Billi, A., A. Valle, M. Brilli, C. Faccenna, and R. Funiciello (2007), Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy, J. Struct. Geol.29, 3, 385-395, DOI: 10.1016/j.jsg.2006.09.008.
  • 3. Bost, M. (2008), Altération par le gel des massifs rocheux: Étude expérimentale et modélisation des mécanismes de génération des contraintes dans les fis-sures, Ph.D. Thesis, Université Paris Est, France.
  • 4. Calvo-Cases, A., C. Boix-Fayos, and A.C. Imeson (2003), Runoff generation, sedi-ment movement and soil water behavior on calcareous (limestone) slopes of some Mediterranean environments in southeast Spain, Geomorphology50, 1-3, 269-291, DOI: 10.1016/S0169-555X(02)00218-0.
  • 5. Casteleyn, L., P. Robion, P.-Y. Collin, B. Menéndez, C. David, G. Desaubliaux, N. Fernandes, R. Dreux, G. Badiner, E. Brosse, and C. Rigollet (2010), Interrelations of the petrophysical, sedimentological and microstructural properties of the Oolithe Blanche Formation (Bathonian, saline aquifer of the Paris Basin), Sedimen. Geol.230, 3-4, 123-138, DOI: 10.1016/j.sedgeo. 2010.07.003.
  • 6. Chou, L., R.M. Garrels, and R. Wollast (1989), Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals, Chem. Geol.78, 3-4, 269-282, DOI: 10.1016/0009-2541(89)90063-6.
  • 7. Deer, W., R.A. Howie, and J. Zussman (1992), An Introduction to the Rock-forming Minerals, Longman Scientific and Technical, Essex, 528 pp.
  • 8. Denis, A., F. Huneau, S. Hœrlé, and A. Salomon (2009), GPR data processing for fractures and flakes detection in sandstone, J. Appl. Geophys.68, 2, 282-288, DOI: 10.1016/j.jappgeo.2009.01.003.
  • 9. Deparis, J., S. Garambois, and D. Hantz (2007), On the potential of Ground Penetrating Radar to help rock fall hazard assessment: A case study of a lime-stone slab, Gorges de la Bourne (French Alps), Engin. Geol.94, 1-2, 89-102, DOI: 10.1016/j.enggeo.2007.07.005.
  • 10. Dreybrodt, W., J. Lauckner, L. Zaihua, U. Svensson, and D Buhmann (1996), The kinetics of the reaction CO2+ H2O →H ++ HCO3–, as one of the rate limit-ing steps for the dissolution of calcite in the system H2O-CO2-CaCO3, Geochim. Cosmochim. Acta60, 18, 3375-3381, DOI: 10.1016/0016-7037(96) 00181-0.
  • 11. Durville, J.L. (1992), Study of mechanisms and modelling of large slope move-ments, Bull. Int. Assoc. Eng. Geol. 45, 1, 23 40, DOI: 10.1007/ BF02594901 (in French).
  • 12. Frayssines, M. (2005), Contribution à l’évaluation de l’aléa éboulement rocheux (rupture), Ph.D. Thesis, Université Joseph-Fourier – Grenoble I, France.
  • 13. Fusi, N., and J. Martinez-Martinez (2013), Mercury porosimetry as a tool for improving quality of micro-CT images in low porosity carbonate rocks, Engin. Geol.166, 272 282, DOI: 10.1016/j.enggeo.2013.10.002.
  • 14. Grandjean, G., and J.C. Gourry (1996), GPR data processing for 3D fracture map-ping in a marble quarry (Thassos, Greece), J. Appl. Geophys.36, 1, 19 30, DOI: 10.1016/S0926-9851(96)00029-8.
  • 15. Grasmueck, M. (1996), 3-D ground-penetrating radar applied to fracture imaging in gneiss, Geophysics61, 4, 1050 1064, DOI: 10.1190/1.1444026.
  • 16. Grasmueck, M., R. Weger, and H. Horstmeyer (2005), Full-resolution 3D GPR imaging, Geophysics70, 1, 12-19, DOI: 10.1190/1.1852780.
  • 17. Grégoire, C., L. Halleux, and L. Volker (2003), GPR abilities for the detection and characterisation of open fractures in a salt mine, Near Surf. Geophys.1, 3, 139-147, DOI: 10.3997/1873-0604.2003004.
  • 18. Javey, C. (1972), L’altération des roches et des monuments. Étude documentaire, Bull. BRGM3, 1, 39-66.
  • 19. Kemeny, J. (2005), Time-dependent drift degradation due to the progressive failure of rock bridges along discontinuities, Int. J. Rock Mech. Min. Sci.42, 1, 35-46, DOI: 10.1016/j.ijrmms.2004.07.001.
  • 20. Kupper, M. (1985), Les vitesses d’érosion du calcaire dans l’eau: étude de phé-nomènes actuels, Ann. Soc. Géol. Belg. 108, 261-265.
  • 21. Léger, E., and A. Saintenoy (2011), Utilisation d’un radar impulsionnel et d’un réflecteur métallique vertical pour la détermination de la teneur en eau d’un sol, Bull. GFHN67, 241-245.
  • 22. Liu, J., A. Polak, D. Elsworth, and A. Grader (2005), Dissolution-induced preferen-tial flow in a limestone fracture, J. Contamin. Hydrol.78, 1-2, 53 70, DOI: 10.1016/j.jconhyd.2005.03.001.
  • 23. Luo, H., M. Quintard, G. Debenest, and F. Laouafa (2012), Properties of a diffuse interface model based on a porous medium theory for solid-liquid dissolution problems, Comput. Geosci.16, 4, 913-932, DOI: 10.1007/ s10596-012-9295-1.
  • 24. Malfilatre, C., P. Boulvais, M.-P. Dabard, S. Bourquin, E. Hallot, D. Pallix, and D. Gapais (2012), Petrographical and geochemical characterization of Comblanchien limestone (Bourgogne, France): A fingerprint of the building stone provenance, C. R. Geosci.344, 1, 14-24, DOI: 10.1016/j.crte.2011. 12.002
  • 25. Neal, A. (2004), Ground-penetrating radar and its use in sedimentology: principles, problems and progress, Earth-Sci. Rev.66, 3-4, 261-330, DOI: 10.1016/ j.earscirev.2004.01.004.
  • 26. Pachauri, R.K., and A. Reisinger (2008), Bilan 2007 des changements climatiques: Rapport de synthese, Contribution des Groupes de travail I, II et III au quatrième Rapport d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat, GIEC, Genève, Suisse.
  • 27. Pipan, M., E. Forte, F. Guangyou, and I. Finetti (2003), High resolution GPR imaging and joint characterization in limestone, Near Surf. Geophys. 1, 1, 39-55, DOI: 10.3997/1873-0604.2002006.
  • 28. Roques, H., and C. Ek (1973), Étude expérimentale de la dissolution des calcaires par une eau chargée de CO2, Ann. Spéléol.28, 4, 549-563.
  • 29. Saad, A. (2011), Influence du changement climatique et des conditions extrêmes sur les massifs fracturés: rôle des fluides (H2O, CO2) dans leur processus d’altération, Ph.D. Thesis, Université Paris-Est, France.
  • 30. Sandmeier, K.J. (2007), REFLEXW – the GPR and seismic 2D processing and 2D/3D interpretation software with modular arrangement, http://www. sandmeier-geo.de.
  • 31. Sjöberg, E.L., and D.T. Rickard (1984), Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence, Chem. Geol. 42, 1-4, 119-136, DOI: 10.1016/0009-2541(84)90009-3.
  • 32. Stolt, R.H. (1978), Migration by Fourier transform, Geophysics43, 1, 23-48, DOI: 10.1190/1.1440826. Vásárhelyi, B., and P. Ván (2006), Influence of water content on the strength of rock, Engin. Geol.84, 1-2, 70-74, DOI: 10.1016/j.enggeo.2005.11.011.
  • 33. Zare, M., and S. Torabi (2008), The effect of moisture on the stability of rock slopes: An experimental study on the rock slopes of Khosh Yeylagh Main Road, Iran. In: E. Ellis, H.S. Yu, G. McDowell, A. Dawson, and N. Thom (eds.), Advances in Transportation Geotechnics, CRC Press, Taylor & Francis Group, London, 355 359
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e713d605-a1b7-41a5-8696-197a48e297e2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.