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Abstract: Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes 
input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated 
during training, neurons (activation functions), and an objective (loss function). CNN is finding various 
applications in image recognition, semantic segmentation, object detection, and localization. The present 
work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of 
microstructure images by carrying out training on 3000 microstructure images and further testing on 300 
microstructure images. The loss function decreased for both training and testing set decreased with the 
increasing number of epochs. The obtained results showed an accuracy of 80 % on the validation dataset. 
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Introduction 
Images have become ubiquitous in all the fields which basically means that vast amount of information 

can be extracted from imagery. While image classification has now become prevalent in fields like computer 
vision, self-driving cars, robotics, etc., it is new in the field of microstructures [1–3]. 

Although the above-mentioned applications differ by various factors, yet they share the common 
process of correctly annotating an image with one or a probability of labels that correlates to a series of classes 
or categories. This is known as image classification. The process of identifying the type of microstructure in 
diverse tasks linked to image-based scene perspectives has taken advantage of the combination of machine 
learning techniques applied to the development of neural networks. 

Deep learning is basically a class of machine learning algorithms that uses multiple layers to 
progressively extract higher-level features from the raw input. It allows computational models that are 
composed of multiple processing layers to learn representations of data with multiple levels of abstraction 
[4,5]. It discovers intricate structure in large data sets by using the back propagation algorithm to indicate 
how machine should change its internal parameters that are used to compute the representation in each layer 
from the representation in the previous layer. These methods are extracted by neural networks. Among the 
deep learning models, CNNs (Convolutional Neural Networks) and their modification (FCNNs) have been 
shown particularly successful used for image classification and segmentation [6–8]. 

Various Machine Learning algorithms [9] are widely used in Friction Stir Welding process [10,11]. 
Friction Stir Welding process is a solid-state joining process [12,13] which is basically used to join the alloys 
which are difficult to weld by conventional welding process [14–17]. Friction Stir Welding process is 
governed by the input parameters such as Tool Rotational Speed (RPM), Tool Traverse Speed (mm/min) and 
an Axial Force (KN) [18–20]. There are a limited number of studies on the application of Convolutional 
Neural Networks in the Friction Stir Welding Process. Hartl et al. [8] used Convolutional Neural Network 
modelling for the process monitoring in the Friction Stir Welding Process. Convolutional Neural Network 
DenseNet-121 was used for automated visual inspection in Friction Stir Welding process [21–23]. The present 
study focuses on the application of the Deep Convolutional Neural Network algorithm for predicting the 
welding efficiency which is the strength of the welded joint with respect to the strength of the base metal 
[24,25] of Friction Stir Welded Copper joints on the basis of microstructure images collected from image 
database available on Google and various other scientific papers [26–28]. 
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1. Experimental Procedure 
CNN models are one of the oldest deep neural networks hierarchies that have hidden layers among the 

general layers to help the weights of the system learn more about the features found in the input image. The 
basic architecture of a CNN consists of a convolutional layer as shown in Figure 1 that separates and identifies 
the various features of the image for analysis in a process called as feature extraction and a fully connected 
layer that utilizes the output from the convolution process and predicts the class of the image based on the 
features extracted in previous stages. 

 
Fig. 1. The Architecture of Convolutional Neural Network 

The image is composed of various pixels which possess a different numerical value to yield the density 
within the RGB color space spectrum. The key idea is that there will be the existence of a relationship between 
which will further act as different features. It should be noted that the spatial arrangement of those obtained 
features will have no impact on the considered model. So, it can be concluded that there is not any 
relationship between these individual features. The Convolutional Neural Network model has variables in 
the form of pixels that have a natural topology. There should be a translation invariance too so that the 
orientation and size of the given object in an image do not affect the working of the Convolutional Neural 
Network architecture. 

Kernels are used to capture the relationship between the different features i.e., different pixels 
composing the image. Kernels are considered as a grid of weights that are overlaid on the portion of the given 
image centred around a single pixel. Once the kernel is overlaid, each weight from the kernel is multiplied 
by the given pixel which is some number. As shown in Equation 1, the output of the central pixel is the sum 
of all those multiplications between the kernel and its respective pixel. 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑝𝑖𝑥𝑒𝑙 = ∑ 𝑊𝑝. 𝑝𝑖𝑥𝑒𝑙𝑝
𝑝
𝑝=1       (1) 

There are four types of layers that make up CNN: 
• Convolutional Layer: This layer is the first layer which is used to extract various features from 

the input images. In this layer, the mathematical operation of convolution is performed between 
the input image and a filter of a particular size MxM which is slide over the input image and 
the dot product is taken between the filter and the parts of the input image with respect to the 
size of the filter MxM. The output generated is known as the feature map which gives us the 
information about the image. This feature map is then fed to other layers. 

• Pooling Layer: A convolutional layer is followed by a pooling layer which is basically used to 
decrease the size of the convolved feature map to reduce the computational costs. This is 
performed by decreasing the connections between layers and independently operating on each 
feature map. There are several pooling techniques like max pooling (largest element is taken 
from the feature map), average pooling (average of elements is taken) etc. 

• Fully Connected Layer: It consists of weights and biases along with the neurons and is used to 
connect the neurons between two different layers. 

• Activation function: It usually follows a fully connected layer and introduces a non- linearity 
into the network. There are several commonly used activation functions such as ReLu, Softmax, 
tanH and the Sigmoid function. 

In Computer Vision, datasets are divided into two main categories: a training dataset used for training the 
algorithm learnt to perform the desired task and a testing dataset that algorithm is tested on. The dataset 
used in present study consists of two classes i.e. the microstructure images which have welding efficiency 
less than 80 percent and the microstructure images which have welding efficiency greater than and equal to 
80 percent. The microstructure images for both classes are shown in Figure 2 a) and Figure 2 b). 
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(a) 

 
(b) 

Fig. 2. a) microstructure image of FSW copper joints have welding efficiency less than 80%, b) microstructure image of 
FSW copper joints have welding efficiency equal to and above than 80% 

2. Results and Discussion 
The basic architecture of the model used in present study is shown in Figure 3. Firstly, it should be 

noted that the convolution operation is performed between two tensors in the Neural Networks. In this 
operation, two tensors are considered as inputs which result in output as a tensor. The convolution operation 
is denoted by the "*" operator. The Equation 2 is used to carry out the convolution operation. 

(
𝑥1 𝑥2 𝑥3
𝑥4 𝑥5 𝑥6
𝑥7 𝑥8 𝑥9

) ∗ (
𝑎1 𝑎2 𝑎3
𝑎4 𝑎5 𝑎6
𝑎7 𝑎8 𝑎9

) = ∑ 𝑥𝑖𝑎𝑖
9
𝑖=1         (2) 

The input microstructure image can be considered as 𝑋 and the filter can be denoted by 𝑓. So, the 
convolution operation can be obtained by Equation 3.  

𝑍 = 𝑋 ∗ 𝑓             (3) 
The convolution operation is shown in Figure 4.  

 
Fig. 3. Architecture of CNN model in present study 

 
Fig. 4. Representation of the basic convolution operation 
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The mathematical operations are as follows: 
1 × 1 + 4 × 0 + 2 × 0 + 6 × 1 = 1 + 0 + 0 + 6 = 7  
4 × 1 + 3 × 0 + 6 × 0 + 4 × 1 = 4 + 0 + 0 + 4 = 8  
2 × 1 + 6 × 0 + 5 × 0 + 2 × 1 = 2 + 0 + 0 + 2 = 4  
6 × 1 + 4 × 0 + 2 × 0 + 1 × 1 = 6 + 0 + 0 + 1 = 7  

If the dimension of an input image is 𝑛 × 𝑛 and the dimension of applied filter is 𝑓 × 𝑓 then the 
dimension of an output image is given by (𝑛 − 𝑓 + 1) × (𝑛 − 𝑓 + 1). The features which are extracted from 
the data by a given convolution layer are sent to the fully connected layer which generates the final output. 
Generally, the fully connected layer in a Convolutional Neural Network represents a traditional Neural 
Network. The convolution layer results an output in the form of two-dimensional matrix, but it should be 
noted that the fully connected layer can only operate with one-dimensional data. So, the value generated by 
applying Equation 3 is firstly converted into one-dimensional format as shown in Figure 5. 

 
Fig. 5. Conversion of two-dimensional matrix to one-dimensional matrix 

After the conversion into one-dimensional array, the values are forwarded to the fully connected 
layer. The individual values obtained by solving considered equations are treated as a separate feature 
representing an image. The incoming data is further subjected to two operations i.e., a non-linear 
transformation and linear transformation by a fully connected layer. Firstly, the data is subjected to linear 
transformation as shown in Equation 4. 

𝑍1 = 𝑊𝑇. 𝑋 + 𝑏           (4) 

𝑋 = [

𝑋1
𝑋2
𝑋3
𝑋4

]            (5) 

𝑊 =  [

𝑊11 𝑊12
𝑊21 𝑊22
𝑊31 𝑊32
𝑊41 𝑊42

]           (6) 

𝑏 = [𝑏1
𝑏2

]            (7) 

Where, b is the bias, W is the weight, and an input image is represented by X. It should be noted that 
weight is the matrix of randomly initialized numbers.  Putting the values of Equation 5, 6 and 7 in Equation 
4, the following Equation is obtained: 

𝑍1 = [𝑊11 𝑊21 𝑊31
𝑊12 𝑊22 𝑊32

    𝑊41
𝑊42

] [

𝑋1
𝑋2
𝑋3
𝑋4

] + [𝑏1
𝑏2

]        (8) 

Now, in order to capture the complex relationship, non-linear transformation architecture in the form 
of an activation function is incorporated. In the present work, the sigmoid activation function has been used 
which is represented by Equation 9. 

𝑓(𝑥) = 1
1+𝑒−𝑥           (9) 

Deep networks need large amount of training data to achieve good performance. To achieve a large 
dataset, image augmentation was required. Image augmentation artificially creates training images through 
different ways of processing or combination of multiple processing, such as random rotation, shifts, shear 
and flips, etc. This can be easily done with the help of Image Data Generator API in Keras. Both the classes 
of the dataset were firstly divided into train and test. The datasets were then augmented to increase the 
dataset size. The following base code was used to generate images by varying the various parameters: 
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Fig. 6. Base code used to generate images by varying the various parameters 

Following the above procedure, around 3000 images for train and 300 images for test were generated. 
Further, for training the model, CNN algorithm was used and Keras library was used for writing the code 
for the same. 

 
Fig. 7.  The procedure that generated approximately 3,000 images for the train and 300 images for the test 

In python programming, the model type that is most commonly used is Sequential type. It is the easiest 
way to build a CNN model and permits us to build a model layer by layer. The add () function is used to add 
layers to the model. In the above model, there are three convolution and pooling pairs followed by a flatten 
layer which is usually used as a connection between the convolution and dense layer. Further, two dense 
layer was added with a dropout layer. Dense layer is the regular deeply connected neural network layer. A 
dropout layer is basically used for regularization and reduces over fitting. The optimizer used was adam 
which is used for changing the attributes of the Neural Network such as learning rate and weights to reduce 
the loss function. 

The batch size was chosen to be 16 and the model was trained with class mode as binary as there are 
two classes to be classified. The number of epoch taken was 50 for training purpose. One epoch refers to one 
cycle through the full training dataset. The model was then evaluated using the test dataset. The classification 
report is used for determining the accuracy of the model. The model was further checked by taking an image 
from test dataset and predicting its class label with the help of following code:  
 

 
Fig. 8. The code with which the prediction of the class label was carried out 

The basic architecture for the model is shown in Figure 3. In the model, there were three convolution 
layers followed by pooling layer. Convolutional layers in a CNN systematically apply learned filters to input 
images to create feature maps that summarize the presence of those features in the input. A pooling layer is 
added after a convolutional layer to apply nonlinearity to the feature maps output by the convolutional layer. 
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The pooling layer operates upon each feature map separately to create a new set of the same number of 
pooled feature maps. This involves selecting a pooling operation. The size of the pooling operation or filter 
is smaller than the size of feature map (we have used 2x2 pixels with a stride of 2 pixels). This means pooling 
layer will always reduce the size of each feature map. The pooling operation used was maximum pooling 
which basically takes the maximum value for each patch of feature map. 

Further, a flatten layer was added which is usually used as a connection between the convolution and 
dense layer. Flattening is basically converting the data into 1-d array for inputting it to next layer. The output 
of convolutional layer is flattened to create a single long feature vector which is then connected to the final 
classification model, which is called a fully- connected layer. A dense layer was added followed by a dropout 
layer and another dense layer. A dense layer is connected deeply which means each neuron in the dense 
layer receives input from all neurons of its previous layer. It basically performs a matrix-vector multiplication 
and the values used in the matrix are parameters that can be trained and updated with the help of back 
propagation. The activation function used for this layer was ‘relu’ which is helpful in applying the element 
wise activation function. The dropout layer used was basically for reducing the over fitting. 
Figure 9a shows the plot of loss function with respect to the number of epochs, 9b shows the plot of accuracy 
with the number of epochs. It is observed from the Figure 9b that the accuracy increases for both training 
and testing (validation) dataset.  

 
(a) 

 
(b) 

 Fig. 9.  Plot of loss function with respect to the number of epochs 

Conclusion 
In this study, Deep Convolutional Neural Network was successfully implemented to predict the 

welding efficiency which is a mechanical property of the Friction Stir Welded joints. Convolution Neural 
Network is a powerful tool for image recognition, and it has a great capability of complex problem-solving. 
While training the Artificial Neural Network models, few transformations should be kept in mind. There is 
a final layer with a sigmoid activation function and a single node for binary classification problems. The 
present research work basically focuses upon building a basic CNN model for the classification of the two 
classes of microstructures. The model was made with an accuracy of 80% which can be improved. Further 
improvement in the model can be made by: 

• Using more images for the dataset 
• Adjusting the learning rate 
• Adjusting the batch size which will allow the model to recognize the patterns better. If the batch 

size is low, the patterns will repeat less and hence convergence will be difficult whereas if the 
batch size is high, learning will be slow. 

• Adjusting the number of epochs 
• The future scope of the work is to use the Convolutional Neural Network (CNN) algorithm for 

detection of defects present in Friction Stir Welded joints.  
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