PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Decomposition Rate, and Carbon and Nitrogen Dynamics of Sphagnum Litter : Lessons from a Peat Bog

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Decomposition rates and changes of carbon and nitrogen contents of Sphagnum litter in mire vegetation can help to explore the ecological effects of climate change and the role of environmental factors from a local to an ecosystem scale. The objective of the study was to determine the relationship between mentioned parameters in small and isolated Sphagnum dominated mires. Measurements had been conducted throughout a year by placing litterbags filled with Sphagnum biomass in three vegetation types (open peat bog, poor fen, alder carr) of a mire ecosystem in Hungary. Peat decomposition rates differed to a great extent; the slowest decomposition rate (39.1±9.52%) was in the alder carr, indicating that slower decomposition could be characteristic for this kind of vegetation type of mire. Between Sphagnum dominated microhabitats, open peat bog showed medium (65.57±4.05) while poor fen the fastest (68.61±5.5) rates in decomposition. The C/N ratio of the Sphagnum litter showed significant decrease (P <0.005) in all studied micro-environments. Slower N release was observed from litter of Alnus dominated association (31.3±6.9%) compared to Sphagnum dominated ones (56.5±8.3%). Our findings showed that the decomposition rates were more dependent on vegetation type than C/N ratio and this relationship was also revealed at a small spatial scale.
Rocznik
Strony
231--240
Opis fizyczny
Bibliogr. 38 poz., rys., tab., wykr.
Twórcy
autor
  • MTA-SZIE Plant Ecology Research Group, Szent István University, Institute of Botany and Ecophysiology, 2103 Gödöllő, Páter K. 1. Hungary
autor
  • Szent István University, Institute of Botany and Ecophysiology, Faculty of Agricultural and Environmental Sciences, 2103 Gödöllő, Páter K. 1. Hungary
autor
  • Szent István University, Institute of Biology, Department of Botany, Faculty of Veterinarian Sciences, H-1078 Budapest, Rottenbiller 50. Hungary
Bibliografia
  • [1] Aerts R. 1997 - Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship - Oikos, 79: 439–449.
  • [2] Aerts R., van Logtestijn C. R. S. P., Karlsson C. P. S. 2006 - Nitrogen supply differentially affects litter decomposition rates and nitrogen dynamics of sub-arctic bog species - Oecologia, 146: 652–658.
  • [3] Aerts R., Verhoeven J. T. A., Whigham D. F. 1999 - Plant-mediated controls on nutrient cycling in temperate fens and bogs - Ecology, 80: 2170–2181.
  • [4] Belyea L. R. 1996 - Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland - Oikos, 66: 269–278.
  • [5] Berg B., McClaugherty C. 2008 - Plant Litter: Decomposition, Humus Formation, Carbon Sequestration - Springer Verlag, Berlin, 340 pp.
  • [6] Bragazza L., Buttler A., Siegenthaler A., Mitchell E. A. D. 2008 - Plant Litter Decomposition and Nutrient Release in Peatlands Carbon Cycling in Northern Peatlands (Geophysical Monograph Series) - 184: 99–110.
  • [7] Bragazza L., Siffi C., Iacumin P., Gerdol R. 2007 - Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry - Soil Biol. Biochem. 39: 257–267.
  • [8] Bu Z-J., Zheng X-X., Rydin H., Moore T., Ma J. 2013 - Facilitation vs. competition: Does interspecific interaction affect drought responses in Sphagnum? - Basic Appl. Ecol. 14: 574–584.
  • [9] Bubier J. L., Moore T. R., Bledzki L. A. 2007 - Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog - Global Change Biol. 13: 1168–1186.
  • [10] Certini G., Vestgarden L. S., Forte C., Tau Strand L. 2014 - Litter decomposition rate and soil organic matter quality in a patchwork heathland of Southern Norway - Soil Disc. 1: 267–294.
  • [11] Charman D. J., Hohl V., Beilman D. W., Blaauw M., Booth R. K.,. Yu Z. C., Zhao Y. 2013 - Climate-related changes in peatland carbon accumulation during the last millennium - Biogeosciences, 10: 929–944.
  • [12] Glenn A. J., Flanagan L. B., Syed K. H., Carlson P. J. 2006 - Comparison of net ecosystem CO2 exchange in two peatlands in western Canada with contrasting dominant vegetation, Sphagnum and Carex - Agricult. Forest Meterol. 140: 115–135.
  • [13] Haraguchi A., Hasegawa C., Hirayama A., Kojima H. 2003 - Decomposition activity of peat soils in geogenous mires in Sasakami, central Japan - Eur. J. Soil Biol. 39: 191–196.
  • [14] Haraguchi A., Kojima H., Hasegawa C., Takahashi Y., Iyobe T. 2002 - Decomposition of organic matter in peat soil in a minerotrophic mire - Eur. J. Soil Biol. 38: 89–95.
  • [15] Hoorens B., Aerts R., Stroetenga M. 2003 - Does initial litter chemistry explain litter mixture effects on decomposition? - Oecologia, 137: 578–586.
  • [16] Johnson L. C., Damman A. W. H. 1991 - Species-controlled Sphagnum decay on a South Swedish raised bog - Oikos, 61: 234–242.
  • [17] Johnson L. C., Damman A. W. H. 1993 - Decay and its regulation in Sphagnum peatlands - Adv. Bryol. 5: 249–296.
  • [18] Johnson L. C., Damman A. W. H., Malmer N. 1990 - Sphagnum macrostructure as an indicator of decay and compaction in peat cores from an ombrotrophic south Swedish peat bog - J. Ecol. 78: 633–647.
  • [19] Kulichevskaya I. S., Belova S. E., Kevbrin V. V., Dedysh S. N., Zavarzin G. A. 2007 - Analysis of the Bacterial Community Developing in the Course of Sphagnum Moss Decomposition - Microbiology, 76: 621–629.
  • [20] Limpens J., Berendse F. 2003 - How litter quality affects mass loss and N loss from decomposing Sphagnum - Oikos, 103: 537–547.
  • [21] Limpens J., Berendse F., Blodau C., Canadell J. G., Freeman C., Holden J., Roulet N., Rydin H., Schaepman-Strub G. 2008 - Peatlands and the carbon cycle: from local processes to global implications - a synthesis - Biogeosci. Disc. 5: 1379–1419.
  • [22] Malmer N., Wallén B. 1999 - The dynamics of peat accumulation on bogs: mass balance of hummocks and hollows and its variation throughout a millennium - Ecography, 22: 736–750.
  • [23] Manninen S., Woods C., Leith I. D., Sheppard L. J. 2011 - Physiological and morphological effects of long-term ammonium or nitrate deposition on the green and red (shade and open grown) Sphagnum capillifolium - Environ. Experiment. Bot. 72: 140–148.
  • [24] Moore T. R., Bubier J. L., Bledzki L. 2007 - Litter Decomposition in Temperate Peatland Ecosystems: The Effect of Substrate and Site - Ecosystems, 10: 949–963.
  • [25] Nungesser M. K. 2003 - Modelling microtopography in boreal peatlands: hummocks and hollows - Ecol. Model. 165: 175–207.
  • [26] Ohlson M., Dahlberg B. 1991 - Rate of peat increment in hummock and lawn communities on Swedish mires during the last 150 years - Oikos, 61: 369–378.
  • [27] Olson J. S. 1963 - Energy storage and the balance of producers and decomposers in ecological systems - Ecology, 44: 322–331.
  • [28] Péli E. R., Nagy J., Cserhalmi D. 2015 - In situ measurements of seasonal productivity dynamics in two Sphagnum dominated mires in Hungary - Carpath. J. Earth Env. 10: 231–240.
  • [29] Rejmánková E., Houdková K. 2006 - Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? - Biogeochemistry, 80: 245–262.
  • [30] Rochefort L., Vitt D. H., Bayley S. E. 1990 - Growth, production, and decomposition dynamics of Sphagnum under natural and experimentally acidified conditions - Ecology, 71: 1986–2000.
  • [31] Simon T. 1992 - Vegetation change and the protection of the Csaroda relic mires, Hungary - Acta Soci. Botanic. Polon. 61: 63–74.
  • [32] Szumigalski A. R., Bayley S. E. 1996 - Decomposition along a bog to rich fen gradient in central Alberta, Canada - Can. J. Bot. 74: 573–81.
  • [33] Szurdoki E., Nagy J. 2002 - Sphagnum dominated mires and Sphagnum occurrences of North-Hungary - Folia historico-naturalia musei Matraensis, 26: 67–84.
  • [34] Thormann M. N., Szumigalski A. R., Bayley S. E. 1999 - Aboveground peat and carbon accumulation potentials along a bog-fen-marsh wetland gradient in southern boreal Alberta, Canada - Wetlands, 19: 305–317.
  • [35] Updegraff K., Pastor J., Bridgham S. D., Johnston C. A. 1995 - Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands - J. Appl. Ecol. 5: 151–163.
  • [36] Verrhoeven J. T. A., Toth E. 1995 - Decomposition of Carex and Sphagnum litter in fens: effect of litter quality and inhibition by living tissue homogenates - Soil Biol. Biochem. 27: 271–275.
  • [37] Waddington J. M., Rochefort L., Campeau S. 2003 - Sphagnum production and decomposition in a restored cutover peatland - Wetl. Ecol. Manag. 11: 85–95.
  • [38] Wu J. N. T., Roulet T. R., Moore Lafleur P., Humphreys E. 2011 - Dealing with microtopography of an ombrotrophic bog for simulating ecosystem-level CO2 exchanges - Ecol. Model. 222: 1038–1047.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e712f78a-56d4-4464-81ab-73c25f96ced4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.