PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In vitro hemocompatibility of thin films materials for direct blood contact

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When designing new biomaterials for tissue contact devices it is important to consider their architecture as it affects different cell response. Surface modification of tubular structures requires the use of different techniques than in the case of flat samples. Similarly, analytical techniques also need to be adapted to the specific shape of substrate. For blood contacting devices this issue is critical because of shear forces generated by fluid flow and responsible for blood components activation. This necessitates the use of diagnostic techniques dedicated for material analysis in dynamic conditions in order to simulate physiological conditions. In the frame of the work, the flat samples as well as tube like elements were considered. The flat samples were prepared for basic research. Based on the results of the basic research the thin coatings were selected for the internal side of the tube like elements which have been analysed in contact with blood using blood flow simulator. The cross section of the coating-substrate interaction was tested using transmission electron microscopy. The attachment of cells to coatings was determined by radial flow chamber. Hemocompatible analysis was carried out in two ways. The quality of the blood after the dynamic test was analysed using flow cytometry. In this case the aggregates formation, platelet consumption and apoptosis derived microparticles were considered. The amount of cells adhered to the materials surfaces was determined by confocal laser microscopy.
Rocznik
Strony
2--8
Opis fizyczny
Bibliogr. 24 poz., tab., wykr., zdj.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Krakow, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, Reymonta St. 25, 30-059 Krakow, Poland
  • Joanneum Research Forschungsges mbH, Institute of Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf, Austria
autor
  • Department of Medicine, Jagiellonian University Medical College, Św. Anny St. 12, 31-008 Krakow, Poland
Bibliografia
  • [1] Lackner J.M., Waldhauser W., Major R., Major L., Hartmann P.: Biomimetics in thin film design - Wrinkling and fracture of pulsed laser deposited films in comparison to human skin. Surf. Coat. Technol. 215 (2013) 192-198.
  • [2] Gorbet M.B., Sefton M.V.: Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25 (2004) 5681-5703.
  • [3] Major R.: Self-assembling surfaces of blood-contacting materials. J. Mater. Sci. - Mater. Med. 24 (2013) 725-733.
  • [4] Xu L.C., Siedlecki C.A.: Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials 28 (2007) 3273-3283.
  • [5] Chittur K.K.: Surface techniques to examine the biomaterial-host interface: An introduction to the papers. Biomaterials 19 (1998) 301-305.
  • [6] Kustosz R., Gawlikowski M., Gorka K., Jarosz A.: Structure of research stand and evaluation method of blood-biomaterial reaction and mechanical strength of the coating. In: Wilczek P., Major R., editors. Nanostructural materials for implants and cardiovascular biomedical devices. Zabrze: M-Studio 2011, 89-97.
  • [7] Dadsetan M., Mirzadeh H., Sharifi-Sanjani N., Salehian P.: In vitro studies of platelet adhesion on laser-treated polyethylene terephtalate surface. J. Biomed. Mater. Res. 54 (2001) 540-546.
  • [8] Huang N., Yang P, Leng Y.X.: Hemocompatibility of titanium oxide films. Biomaterials 24 (2003) 2177-2187.
  • [9] Seyfert U.T., Biehl V., Schenk J.: In vitro hemocompatibility testing of biomaterials according to the ISO 10993-4. Biomol. Eng 19 (2002) 91-96.
  • [10] Otto M., Klein C.L., Koehler H., Wagner M., Roehrig O., Kirkpatrick C.J.: Dynamic blood cell contact with biomaterials: validation of a flow chamber system according to international standards. J. Mater. Sci. - Mater. Med. 8 (1997) 119-129.
  • [11] Haefer R.A., Oberflächen- und Dünnschichttechnologie, Teil 1: Beschichten von Oberflächen, Springer, Berlin 1987.
  • [12] Girdhar G., Bluestein D.: Biological effects of dynamic shear stress in cardiovascular pathologies and devices. Expert Review of Medical Devices 5(2) (2008) 167-181.
  • [13] Yin W., Shanmugavelayudam S.K., Rubenstein D.A.: The effect of physiologically relevant dynamic shear stress on platelet and endothelial cell activation. Thromb. Res. 127 (2011) 235-241.
  • [14] Katritsis D., Kaiktsis L., Chaniotis A., Pantos J., Efstathopoulos E.P., Marmarelis V.: Wall Shear Stress: Theoretical Considerations and Methods of Measurement. Prog. Cardiovasc. Dis. 49 (2007) 307-329.
  • [15] Lackner J.M., Major R., Major L., Schoberl T., Waldhauser W.: RF deposition of soft hydrogenated amorphous carbon coatings for adhesive interfaces on highly elastic polymer materials. Surf. Coat. Technol. 203(16) (2009) 2243-2248.
  • [16] Lackner J.M., Wilczek P., Sanak M., Jakiela B., Stolarzewicz B., Kowalczuk M., Sobota M., Maksymow K., Spisak M., Major B.: Functional cardio-biomaterials. Advances in Materials Science 11(2) (2011) 5-25.
  • [17] Trembecka-Wójciga K., Major R., Lackner J.M., Major B.: Bioinspired surface modification. Inżynieria Materiałowa 6 (2014) 560-563.
  • [18] Trembecka-Wojciga K., Major R., Lackner J.M., Bruckert F., Jasek E., Major B.: Biomechanical properties of the thin PVD coatings defined by red blood cells. Bulletin of the Polish Academy of Sciences Technical Sciences 63 (2015).
  • [19] Major R., Lackner J.M., Gorka K., Wilczek P., Major B.: Inner surface modification of the tube-like elements for medical applications. RSC Advances 3 (2013) 11283-11291.
  • [20] Major R., Trembecka-Wojciga K., Lackner J.M., Major B.: Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization. World Academy of Science, Engineering and Technology International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 9(6) (2015).
  • [21] Décavé E., Garrivier D., Bréchet Y., Fourcade B., Bruckert F.: Shear flow-induced detachment kinetics of Dictyostelium discoideum cells from solid substrate. Biophys. J. 82(5) (2002) 2383-2395.
  • [22] Goodman S.L., Cooper S.L., Albrecht R.M.: Integrin receptors and platelet adhesion to synthetic surfaces. J. Biomed. Mater. Res. 27 (1993) 683-696.
  • [23] Brash J.L.: Proteins At Interfaces: Physicochemical And Biochemical Studies. Macromolecular Chemistry 9 (1985) 69.
  • [24] Lambrecht L.K., Young B.R., Stafford R.E., Park K., Albrecht R.M., Mosher D.F., Cooper S.L.: Rheological aspects of thrombosis and haemostasis: basic principles and applications. Thromb. Res. 41 (1986) 99.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e710ef66-284e-4f92-8117-3a937d212efa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.