PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved understanding of Sodium hydroxide concentration role and kinetic model of cryolite reactive extraction in cathode Spent Pot Linings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spent Pot Lining (SPL) cathode pot, waste from the aluminium smelting process needs detoxification from cyanides, washing out water-soluble salts and extraction of the cryolite (Na3AlF6) decomposition products to be recycled. Revealed cryolite decomposition mechanism with NaOH opens possibilities to explore its critical role in the reactive extraction process. Common Na+ ion from NaOH hinders the solubility of the product but also drives mass transfer to the reaction site. Reaction mass balance provides adequate liquid to solid ratio (L/S) and NaOH concentration range. A newly developed kinetic model based on Whitman film theory and NaOH mass flow enables prediction of the reaction time to decompose cryolite to a low enough level. Results show that the internal particle resistance to transport (1/ks) is 19 times larger than the external (1/kl) one and governs the whole process.
Rocznik
Strony
37--44
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wz.
Twórcy
  • TALUM d.d. Kidričevo, Tovarniška cesta 10, 2325 Kidričevo, Slovenia
  • Scientific Research Centre BISTRA Ptuj Slovenia
autor
  • University of Ljubljana Faculty of Chemistry and Chemical Technology Ljubljana, Slovenia
Bibliografia
  • 1. Holywell, G. & Breault, R. (2013). An overview of useful methods to treat, recover, or recycle spent potlining, JOM. 65, 1441–1451. DOI: 10.1007/s11837-013-0769-y.
  • 2. Pawlek, R.P. (2012). Spent Potlining: An Update, in: Light Met., 2012. DOI: 10.1002/9781118359259.ch227.
  • 3. Chauke, L. & Garbers-Craig, A.M. (2013). Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data, Carbon N. Y. 58, 40–45. DOI: 10.1016/j.carbon.2013.02.023.
  • 4. Hop, J.G., Støre, A., Foosnæs, T. & Øye, H.A. (2004). Chemical and physical changes of cathode carbon by aluminium electrolysis, VII Int. Conf. Molten Slags Fuxes Salts. 775–782. DOI: 10.1179/037195505X63376.
  • 5. Østrem, Ø. (2013). Cathode wear in Hall-Héroult cells, Thesis for the degree of PhD, Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Materials Science and Engineering.
  • 6. Silveira, B.I., Dantas, A.E., Blasquez, J.E. & Santos, R.K.P. (2002). Characterization of inorganic fraction of spent potliners: Evaluation of the cyanides and fluorides content, J. Hazard. Mater. 89, 177–183. DOI: 10.1016/S0304-3894(01)00303-X.
  • 7. Mikša, D., Homšak, M. & Samec, N. (2003). Spent pot-lining utilisation possibilities, Waste Manag. Res. 21, 467–473. DOI: 10.1177/0734242X0302100509.
  • 8. Tropenauer, B., Klinar, D., Samec, N. & Golob, J. 2018. Circular economy model of cathode waste processing. DOI: 10.18690/978-961-286-211-4.8.
  • 9. O’Neil, M.J. (ed.), (2001). The Merck Index – An Encyclopedia of Chemicals, Drugs, and Biologicals. 13th Edition, Whitehouse Station, NJ: Merck and Co., Inc., p. 456.
  • 10. Cenčič, M., Kobal, I. & Golob, J. (1998). Thermal Hydro-lysis of Cyanides in Spent Pot Lining of Aluminium Electrolysis, Chem. Eng. Technol. 21, 523–532. DOI: 10.1002/(SICI)1521-4125(199806)21:6<523::AID-CEAT523>3.0.CO;2-P.
  • 11. Ntuk, U., Tait, S. White, E.T. & Steel, K.M. (2015). The precipitation and solubility of aluminium hydroxyfluoride hydrate between 30 and 70oC. Hydrometallurgy, 155, 79—87. DOI: 10.1016/j.hydromet.2015.04.010.
  • 12. Schönfelder, I., Gock, E. Tochtrop, E. & Schmidt Rieder, E. 2015. Recycling von Elektrolyseausbruch (SPL) aus der Primäraluminiumgewinnung, (n.d.). http://www.vivis.de/phocadownload/Download/2015_rur/2015_RuR_385-404_Gock.pdf (accessed June 15, 2018).
  • 13. Zhao, L.C. 2001. Comprehensive recovery of waste linings of aluminium electrolysers, CN patent 1,320,491 (Appl. date 28 February 2001). https://patents.google.com/patent/CN1320491A/en.
  • 14. Shi, Z., Li, W. Hu, X., Ren, B., Gao, B. & Wang, Z. (2012). Recovery of carbon and cryolite from spent pot lining of aluminium reduction cells by chemical leaching, Trans. Nonferrous Met. Soc. China, 22, 222–227. DOI:10.1016/S1003-6326(11)61164-3.
  • 15. Kasireddy, V., Bernuer, J.L. & Kimmerle, F.M. (2003). Recycling of spent pot linings, US patent No.: US 6,596,252 B2, Date of Patent: Jul. 22, 2003.
  • 16. Lisbona, D.F. & Steel, K.M. (2008). Recovery of fluoride values from spent pot-lining: Precipitation of an aluminium hydroxyfluoride hydrate product, Sep. Purif. Technol. 61(2), 182–192. DOI: 10.1016/j.seppur.2007.10.012.
  • 17. NIOSH – The National Institute for Occupational Safety and Health. 2016, Solubility of Cryolite, (2016). access on 10. Jun 2018 https://www.cdc.gov/niosh/npg/npgd0559.html.
  • 18. Staffan Sjoeberg, Chemical Specification in Aqueous Al3+-F–-OH– Systems of relevance to Natural Waters and Body Fluids: The dissolution of AlF3 and Na3AlF6 (cryolite). Department of Inorganic Chemistry, Umeå University, Sweden. Unpublished report for Toxicon AB, (2002). (Committee for Risk Assessment RAC Annex 1 Background Document to the Opinion proposing harmonised classification and labelling at Community level of Trisodium hexafluoroaluminate (cryolite), natural and synthetic; 2010).
  • 19. Averill, B. & Eldredge, P. (2016). General Chemistry: Principles, Patterns, and Applications 1.0 |Flat World Education, Flat World Educ.
  • 20. Reynolds, J.G. & Belsher, J.D. (2017). A Review of Sodium Fluoride Solubility in Water. J. Chem. Eng. 62(6), 1743–1748. DOI: 10.1021/acs.jced.7b00089.
  • 21. Selvaraj, D., Toghiani, R.K. & Lindner, J.S. (2017). Solubility in the Na + F + NO3 and Na + PO4+ NO3 Systems in Water and in Sodium Hydroxide Solutions. J. Chem. Eng. 53(6), 1250–1255.DOI:10.1021/je700597m.
  • 22. Weber, C.F., Beahm, E.C., Lee, D.D. & Watson, J.S. (2000). A Solubility Model for Aqueous Solutions Containing Sodium, Fluoride, and Phosphate Ions, Ind. Eng. Chem. Res. 39(2), 518–526. DOI: 10.1021/ie990457l.
  • 23. Xiping, C. & Wangxing, L. (2007). Research on crushing character of spent cathode, in: TMS Light Materials.
  • 24. Tropenauer, B., Klinar, D., Samec, N., Golob, J. & Kortnik, J. (2019). Sustainable waste-treatment procedure for the spent potlining (SPL) from aluminium production. Mater. Tehnol. 53(2), 277–284. DOI: 10.17222/mit.2018.147.
  • 25. Patent application No.: P-201900265, Slovenian Intellectual Property Office (SIPO), (January 6. 2020).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e70ac8f8-92b4-4a71-a61d-3476f0495e01
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.