PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic–slip interface effect on effective elastic modulus of elliptical-fiber reinforced asphalt concrete with large deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An elastic–slip interface model is proposed to investigate the effective elastic modulus of elliptical-fiber reinforced asphalt concrete, and the nonlinear factor related with the second-order term of strain is used to consider the large deformation of asphalt concrete. The representative volume element with effective isotropic medium is introduced to describe the overall properties of elliptical-fiber reinforced asphalt concrete. Combining the confor-mal mapping technique and polynomial function expanded method, a closed form solution of effective elastic modulus is obtained. Through numerical examples, the effects of inter-face material coefficients and the nonlinear factor on the effective elastic modulus under different shapes of fibers are discussed in detail. To validate the present interface model, experimental investigation on the interface effect on the elastic modulus is presented.
Rocznik
Strony
707--715
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
  • Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, PR China
  • Key Laboratory of Smart Materials and Structures Mechanics, Shijiazhuang, 050043, PR China
autor
  • Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, PR China
autor
  • School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, PR China
autor
  • School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, PR China
Bibliografia
  • [1] P.S. Pell, Fatigue characteristics of bitumen and bituminous mixes, in: International Conference on the Structural Design of Asphalt Pavements, 1962, 203.
  • [2] A. Yin, X. Yang, G. Zeng, Experimental and numerical investigation of fracture behavior of asphalt mixture under direct shear loading, Constr. Build. Mater. 86 (2015) 21–32.
  • [3] X. Shu, B. Huang, Dynamic modulus prediction of HMA mixtures based on the viscoelastic micromechanical model, J. Mater. Civil. Eng. 20 (2008) 530–538.
  • [4] X. Luo, R. Luo, R.L. Lytton, Characterization of fatigue damage in asphalt mixtures using pseudostrain energy, J. Mater. Civil. Eng. 25 (2013) 208–218.
  • [5] Q. Dai, M.H. Sadd, Z. You, A micromechanical finite element model for linear and damage-coupled viscoelastic behavior of asphalt mixture, Int. J. Numer. Analyt. Methods Geomech. 30 (2010) 1135–1158.
  • [6] E. Masad, S. Dessouky, D. Little, Development of an elastoviscoplastic microstructural-based continuum model to predict permanent deformation in hot mix asphalt, Int. J. Geomech. 7 (2015) 119–130.
  • [7] L. Leon, R. Charles, N. Simpson, Stress–strain behaviour of asphalt concrete in compression, Proc. Struct. Integrity 2 (2016) 2913–2920.
  • [8] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique 29 (1979) 47–65.
  • [9] N. Shashidhar, A. Shenoy, On using micromechanical models to describe dynamic mechanical behavior of asphalt mastics, Mech. Mater. 34 (2004) 657–669.
  • [10] Q. Dai, Z. You, Prediction of creep stiffness of asphalt mixture with micromechanical finite element and discrete element methods, J. Eng. Mech. 133 (2007) 163–173.
  • [11] J. Pei, Z. Fan, P. Wang, Micromechanics prediction of effective modulus for asphalt mastic considering inter-particle interaction, Constr. Build. Mater. 101 (2015) 209–216.
  • [12] E. Masad, L. Tashman, D. Little, Viscoplastic modeling of asphalt mixes with the effects of anisotropy, damage and aggregate characteristics, Mech. Mater. 37 (2005) 1242–1256.
  • [13] T. Laith, M. Eyad, L. Dallas, A microstructure-based viscoplastic model for asphalt concrete, Int. J. Plasticity 21 (2005) 1659–1685.
  • [14] M.J. Kim, S. Kim, D.Y. Yoo, H.O. Shin, Enhancing mechanical properties of asphalt concrete using synthetic fibers, Constr. Build. Mater. 178 (2018) 233–243.
  • [15] S.Y. Alam, F. Hammoum, Viscoelastic properties of asphalt concrete using micromechanical self-consistent model, Arch. Civil Mech. Eng. 15 (2015) 272–285.
  • [16] X. Zhu, Y.L. Chen, Numerical prediction of elastic modulus of asphalt concrete with imperfect bonding, Constr. Build. Mater. 35 (2012) 45–51.
  • [17] Y. Gao, M. Dong, L. Li, Interface effects on the creep characteristics of asphalt concrete, Constr. Build. Mater. 96 (2015) 591–598.
  • [18] G. Ferrotti, D. Ragni, X. Lu, Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders, Mater. Struct. 50 (2017) 226.
  • [19] N. Sudarsanan, R. Karpurapu, V. Amrithalingam, An investigation on the interface bond strength of geosynthetic-reinforced asphalt concrete using Leutner shear test, Constr. Build. Mater. 186 (2018) 423–437.
  • [20] M.H. Sadd, Elasticity: Theory, Applications, and Numerics, Elsevier Butterworth-Heinemann, Burlington, MA, USA, 2005.
  • [21] W. Voigt, Lehrbuch der kristallphysik,(Textbook for Crystal Physics), Teubner, Leipzig Und Berlin, 1928, pp. 716–761.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e700335e-66ed-4093-87c2-46009fbe40cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.