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Abstract

Semi-Markov decision processes theory delivers the methods which allow to control the operation pro-
cesses of the systems. Theinfinite duration semi-Markov decision processes are presented in the chapter.
The gain maximization problem of three tasks operation processes subject to constraint of an availability
of the semi-Markov reliability model is discussed. The problemis transformed on some linear program-

ing maximization problem.

1. Introduction

In many articles and books we can find applica-
tions of semi-Markov (SM) processesin therelia-
bility theory. The most interesting and important
books on these issues include monographs (Ber-
naciak, 2005; Howard, 1971; Jewell, 1963; Lim-
nios & Oprisan, 2001). The semi-Markov deci-
sion processes theory delivers methods which
give the opportunity to control an operation pro-
cesses of the systems. We investigate the infinite
duration SM decision processes. It was developed
by Jewell (Jewell, 1963), Howard (Howard, 1960,
1964, 1971), Main and Osaki (Main & Osaki,
1970) and Gercbakh (Gercbakh, 1969). Those
processes are also discussed in (Feinberg, 1994,
Grabski, 2015, 2018; Korolyuk & Turbin, 1976)
and (Boussemart & Limnios, 2004). The gain
maximization problem subject to an availability
constraint for a semi-Markov model of the opera-
tion in the reliability aspect is discussed in those
papers. The problem istransformed on some max-
imization problem of linear programing. Very im-
portant and original scientific work concerning
discussed here problem were published by

(Boussemart et al., 2001; Boussemart & Limnios,
2004; Beutler & Ross, 1986) and also by (Fein-
berg,1994). It should be added that asimilar prob-
lem but for the two task operation was presented
at the ICNAAM 2018 conference and the ex-
tended abstract is published in the AIP Confer-
ence Proceedings (Grabski, 2018). The similar
problem for the two task operation as afull paper
is aso published in AMSDA 2019 Conference
Proceedings (Grabski, 2021).

2. Necessary concepts and propertiesfrom
semi-Markov processes theory

We start from a brief presentation of concepts and
properties of the semi-Markov processes theory
that are essential in the chapter.

A stochastic {X(t): t = 0} processwith afinite or
countable state space S, piecewise constant and
right continuous trgectory is said to be a semi-
Markov process if there exist non-negative ran-
dom variablest, =0 < t; < 1, < -+ such that

P(tpi1 — Tn < . X(Th41) = 1X (1)
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= i’Tn —Tn-1 < th,...T1 — Tg < tl)
= P(Tn+1 — Ty < t,X(Tn+1) :j | X(Tn) = i),
t=>=0n=12... (1)

Two dimensiona sequence

{(tns1 — T X(Tp31))in=012,..}
is said to be the Markov renewal process associ-

ated with the semi-Markov process.
The transition probabilities

Qij(t) = P(Tn+1 —Tn < taX(Tn+1)

=j1X(T) =10),t =0, (2
form amatrix
Q(t) = [Qi;(t):i,j € S], )

that is called the semi-Markov kerndl.

To determine semi-Markov process asamodel we
have to define an initial distribution and all ee-
ments of its kerndl.

It iseasy to notice that the sequence {X(z,): n =
0,1,..}is a homogeneous Markov chain with
transition probabilities

Py = P(X(tns1) = j | X(z2) = 0) = limQy;(2).
(4)
This random sequence is called an embedded

Markov chain in the semi-Markov process.
The function

Gi(t)=P(T; <t) =
P(Tni1 = Tn St X(70) = 0) = Xjes Qi(t) (5)
isthe CDF distribution of awaiting time T; denot-

ing the time spent in state i when the successor
state is unknown, the function

Fij(t) =
P(tpi1 — T < t1X(70) =1, X(Tns1) =)

_ Qi(D)
pij (©)
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isthe CDF of arandom variable T;; that is called
aholding time of astate i, if the next state will be
j. Itiseasy to seethat

Qi (t) = pijFi;(t). (7)
A set S represents the reliability states of the sys-
tem. This set may be divided into two subset S,
and S_ wherethefirst containsthe“up” statesand
the second one contains the failed states (“down”
states). Those subset form a partition, i.e,
S=S§,uS_andS, nS_=09.

Suppose thati € S, isan initia state of the pro-
cess. Conditional reliability functions of a system
are defined by therule

Ri(t) = P(vu € [0,t], X(w) € S| X(0) = 1),

i €S,. (8)

The conditiona reliability functions satisfy sys-
tem of integral equations

Ri(t) = 1= Gi(t) + ¥jes, fy Rit — x)dQy;(x)
i €S,. 9)

Passing to the Laplace transforms, we obtain

Ri(s) = < = Gi(s) + Bj s, Ri(8)Gyj(s). i €S,
(10)

where

Ri(s) = f0°° e StdR;(t). (11)

The conditional means time to failure of the sys-
tem can be calculated using equalities

E(9) = sllrgl R(s),s>0,i €5,. (12)
The matrix form of the equation system (9) is

[I =G5, (s)] - R(s) = W, (s), (13)
where

R(s) =[R(s): i € 5,17,
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Ws () =[t-G(s)sies,] (14)
are one-column matrices and
qs,(s) = [Gij(s):i,j €5.],
I1=1[6; i,j €5,] (15)

are sguare matrices.

A random variable 0;5 , i € S,, denoting a first
passagetimefromthestatei € S, tothesubset S_
designates time to failure of a system with initia
statei € S... A cumulative distribution function of
this random variablesis denoted as
@5 (£)=P(0;5. <t), i€S,, t=0. (16)

Between functions R;(t) and ®;5 (t), i € S,,
t > 0, we have equalities

R(t)=1—-9; (t),i €S,,t=0. (17)
Under assumptionsthat are satisfied in considered
here problem, the cumulative distribution func-

tions are proper and they are the only solution of
the system equations

Pis (t) = Xjes. Qi (1)

+2kes, fot Dis_(t — x) dQy (x),
i€S, t>0. (18)

Passing to the Laplace-Stieltjes (L-S) transforms,
we obtain

Pis_(s) = Xjes_ Gij(s) + Xk es, Gir(s) Prs_(s),

i €S,, (19)
system of linear equation, where L-S transforms
dis (s),i €S,,areunknown.
From (17) it follows that
Ri(s) == is_ (). i €5, (20)
The system of linear equation (19) isequivaent to
amatrix equation

[I = §s,(5)] - @s,(s) = bs, (s), (21)

where
qs,(s) = [Gi(s): i,j €5,],
Ps,(s) = [951'5_(5): [ € S+]T,

Bs, (s) = [Zjes. dij(s): i €5,] .

From Theorem 3.2 (Boussemart & Limnios,
2004) it follows that there exist expectations
(6:s.), i €S, and they are unique solutions of
the linear system of equationsthat is equivalent of
the matrix equation

[I - Ps+] : as+ = Ts+’ (22)

where
PS+ = [pij: l,] € S+]!

TS.,_ =[E(T)):i €5,],
s, = [E(0;5.):1 €5,].

3. Semi-Markov decision process

The concept of Semi-Markov decision process
(SMDP) is presented in many books and aso in
monograph (Grabski, 2015). Notations and defi-
nitions come from (Grabski, 2015).

The maximization problem considered in the
chapter may be briefly described asfinding astrat-
egy 8 €Dy xD,x..xDy tha maximized
the criterion function g(&) subject to availability
constraint  k(6) >a, where «a € (01],
S={12,.., N}isadtate set of considered semi-
Markov decision process, D;, i € S, are sets of de-
cisonsand g(8) denotesthe gain per unit of time
as aresult of along operation system.

4. Decision semi-Markov model of operation

4.1. Description and assumption

The working object (device) can perform three
types of tasks 1, 2 and 3. A duration of r type of a
task is a non-negative random variable ¢&,,
r = 1,2,3. The working object may be damaged.
A time to failure of the object executing atask r
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IS a non-negative random variable ¢, r = 1,2,3,
with a probability density function f; (x), x = 0,
r=123.

A repair time of the object performing task r isa
non-negative random variable n,, r =123,
governed by aprobability density function f;, (x),
x =0, r =1,23. Each repair is arenewal of the
object. After the repair is completed, the object
starts execution of the task 1 with a probability
p1,, thetask 2 with thep, and the task 3 with the

probability ps
P, * D2, +p3, =1 r=123

A duration of an inspection after atask r isanon-
negativerandom variabley,, havingaPDF f,, (x),
x>0, r=123. After the inspection is
completed, the object starts execution of the task
1 with the probability q, , the task 2 with
probability g, and the task 3 with the probability

qs,
q1, ¥ q2, +q3, =1, r=123.

Furthermore we assume that all random variables
and their copies are independent and they havethe
finite and positive second moments.

4.2. Model construction

We start from introducing operation states of the
Process:

1 —an object repair after failure during executing
of thetask 1;

2 — an object repair after failure during executing
of thetask 2;

3 — an object repair after failure during executing
of thetask 3;

4 — an object operation, performing of the task 1,

5 —an object operation, performing of the task 2;

6 — an object operation, performing of thetask 3;

7 — checking the object technical condition and
renewal after the task 1 executing;

8 — checking the object technical condition and
renewal after the task 2 executing;

9 — checking the object technical condition and
renewal after the task 3 executing.

To construct a decision stochastic process we
have to determine sets of decisions (alternatives)
for every state.

Di: 1 — a norma repair after failure during
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executing of the task 1,
2 — an expencive repair after failure during
executing of the task 1;
D2: 1 — a norma repair after failure during
executing of the task 2,
2 — an expencive repair after failure during
executing of the task 2;
D3: 1 — anorma repair after failure during
executing of the task 3,
2 — an expencive repair after failure during
executing the task 3;
D4: 1—anormal profit per unit of timefor the task
1 executing,
2 —ahigher profit per unit of time for the task
1 executing;
Ds: 1—anormal profit per unit of timefor the task
2 executing,
2 —ahigher profit per unit of time for the task
2 executing;
Ds: 1 —anormal profit per unit of timefor the task
3 executing,
2 —ahigher profit per unit of time for the task
3 executing;
D7: 1 —anormal inspection after performingof the
task 1,
2 — an expencive inspection after performing
of thetask 1;
Ds: 1—anormal inspection after performing of the
task 2,
2 — an expencive inspection after performing
of thetask 2;
Do: 1—anormal inspection after performing of the
task 3,
2 — an expencive inspection after performing
of the task 3.
The possible state changes of the process are
shownin Figure 1.

8 7

2 9

Figure 1. Possible state changes of the operation
process.
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A model of an object operation isadecision semi-

Markov  process with a state space
S={12,..,9}, sets of actions (decisions) Dj,
Da,..., De. This process is defined by a family of
0 0 0 0
0 0 0 S0
0 0 0 0¥
e o 0 0
eP® =l o o®wv o 0
0 o o¥w o
0 0 0 0¥
0 0 0o oW
0 0 0 QR
t=>0.

Themode isconstructed if all kernel elementsare

determined. According to assumptions we

cal culate elements of the matrix Q¥ (¢),t = 0,
® () = k)F (k)(t) Q¥ () = )F <k)(t)
Q¥(¢e) = "’F K000, Q2 (6) = pLF 0 (0),
Q(e) = "’F K00 (0), Q56 (8) = ">F K0 (0,

(1) = )F (k)(t) NOE )F <k)(t)
Q5 (6) = P33)ank>(t),

AP = f; [1 = Fio(®)] dF o),
Q5 ® = fy [1=Fo )] dF g0 0),

Q@ = J; 1= Fyo0 (0] dF o (),
FIOENN [1—F€2(k)(x)]dF€§k)(x),
AR = [ |1 - Foo@)| dF 0 (),
QW =11~ Ff(k)(x)]dF((k)(x)
180 = 41PF 00(0), Q15 (©) = g5, F w (©),
B = q;‘>F w(0), Qg (B) = qi"’F o,
Q) = qg’% w(2), Q56 (0) = 4§, )F 2<k> ),
Qg (1) = q ">F <k>(t) Q35 (6) = q "’F <k>(t)
QW) = qgng;k) (®). (24)

functions matrix that is called a kernel of the
decision semi-Markov process. The kernel is
determined by the matrix:

Yoy om0 0 0
Yo w0 0 0
0¥w o®w o 0 0
0 o o®om o 0
0 0 o Q¥w o
0 0 0 0 0¥
QM) Q) 0 0 0
() Q) 0 0 0
Q) Q) 0 0 0
(23)

Thetransition probability matrix of the embedded
Markov chain {X(t,):n € Ny} we obtain using

equality
Py = lim 0 (®). (25)

The below matrix represents the transition proba-
bility matrix of the embedded Markov chain

P(a) =

(0 0o o pf p¥ p® 0o 0 0]

o o o pf pP pY 0o 0 o0

o o o pf PP pY 0o 0 o

p® 0 0o 0o o o p® o o

0o p® 0o 0o o o 0o P o

o 0o p® o o o 0o o p¥

o 0o o PP pP pY 0o 0 o

0o 0 o p¥ pP pl 0 0 o0

Lo 0o o pf Pl P o o o0l
(26)

From (24) and (25) we obtain

(9 (k) — k) — (k) _

P14 = P1,» P15 — P2,1 P16 — P3.1 P24 = P1ys

k) — (k) — k) — (®) _

P25 = P2,y D26 = P3,1 P34 = P13) P35 = P2s»

Pg? = D3, Pﬁ) = f [1 - de) (X)] ngik) (x),
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Py = J - F oo (X)]dF 00 (x),
sy = fooo [1 - Fék)(x)] dF ¢ (x),
Pl = J)7 (1= Fyo (O1dF 0 (),
Py = Iy [1 - Fék)(x)] dF a0 (x),
Pl = J;7 1= Fyo (1dF 0 (),

p$ = a1, p% = 40, P = q5,,
(k) _ (k) _ (k) _
Pgs = 41, Pgs = 925, Pge — 43,
k k k
p$) = a1, 08 = a5, 08 = a5, (27)

5. Linear programing method

Mine and Osaki (Mine & Osaki, 1970) presented
linear programming method for solving the prob-
lem of optimization without additional con-
straints. The problem of optimization with an ob-
ject availability constraints is investigated in this
chapter.

Stationary probabilities;(5),j € S, for every de-
cision k € D; satisfy the following linear system
of equations

Yies 7Ti(5)Pi(]I~() = m;(8), Xies m:(8) = 1,

m;(8)>0,j €S, (28)
where
Py’ = limQ°(0). 1) €. (29)

Let a}k) be aprobability that in the state j € S has
been taken decision k € D;. It is obvious that
Skep, 0 =1,0<a <1j€s. (30)

The criterion function and constraints can be writ-
ten as

(5) = HesZeen; a{m; (&m0 31)
g S jesSken; &0m;@)m®
Tjesy Zkep; @i Omj(&)m¥
k(8) = ———L% > (32)
YjesXkep;a; mj(8)m;
where m*” is amean value of thewaiting timein
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state j under decision k and 73.(") is areward re-

celved by staying at a state j per one unit of time.
Finally, we obtain the following problem of linear
programming:

Find stationary strategy § maximizing the func-
tion

k k
9(8) = Ties Tiep, uy P (33)
under constraints
k k
Yjes, ZkeDj m]( )yj( ) > a, (34)

(or Xjes. ZkeD]- m}k) y]'(k) <l-aS_-=5-S5;)

(35)
: K
Lkeb; y],( ) _ Yies Dkep, pi(]lf) yi( )=0, (36
Zjes Zven, ;)0 = 1 (37)
)

(k) — a; m;i(6) -0 -

¢ ZjeSZkEDj aj.k)n-j(g)m;k) = Y, ( )
jES k€D

The optimal stationary strategy consists of
decisions determined by probabilities

(k)
Yi
agk) —_ j

j (k) (39)

In the model the set of “up” statesis S, = {4,5,6}
and the “down” states set is S_=S5-S, =
{1,2,3,7,8,9}.

6. Numerical example

Decision variables:

1 2 1 2 1 2 1 2 1
yD, y By 5@ 0@ W @ 0

2 1 2 1 2 1 2 1 2
R A I A

Known parameters:

uil)’ ugz), ugl)’ ugz)’ ugl)’ ugz)’ uil)l uiz), uél)’

u® u® 4@ (D @ O @) D @)
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mgl)’ mEZ)l mgl)’ mgz)’ mgl)’ mgz)’ mA(}l)l

mf), mél)’ méz)’ mél)’ mgz)’ mgl)’ m§2),

o ) (1) (2)
mg’,mg’,mg, Mg .

In this case the formulas (33)—38) take the fol-
lowing form.
Criterion function:

A T 7 S
2 2 1 1 2 2 1 1
D S A 56 Y S T e
2 2 1 1 2 2 1 1
S e P S N
2 2 1 1 2 2 1 1
e i
2 2 1 1 2 2
Tug yg T Uy Yy T UG Yy
Constraints;
j=1
W, @ (D1, @.@)_
oty —(p41y4 Ll PP ) =0,
j=2:
W, @ (D1, @.@)_
Y2 Y, _(pszys T P52 s ) =0,
j=3
W, @ W1, @. @) _
Y3t ys _(p63y6 + Pe3 Ve ) =0,
Jj =4
1 2 2 2
7+ — (py® + p2y®
+psvst + i vi? + iy + plys?
+ Py + iy + oy v + gy v
1 1 2 2
+pSpys D+ pRyiP) =0,
Jj=25:
0D~ syl e
1 1 2 2 1 1 2 2
T D5 Y, T DY, Y P35 YVs Y P35 Y3
+pye v + oy + g v + g vs”
+p5e v+ g vs) = 0,
j=6:
o el B o
1 1 2 2 1 1 2 2
T DY, T D6y tTP36Ys T DP36Y3
+ iyt + Py, +pie v + pee v

2
+pSDyP+ pPy@Py = o,

j=T1:
w0+ 3P — (3P +pFyP) =0,
j=28:
(1) (2) 1), (1) 2),,2)) —
Yg t¥g o — (pssys + Psg Vs ) =0,
j=09:
(1) (2) 1), (@) 2,,@)) =
Yo 't Yy — (p69y6 * P9 Ve ) =0,
2) (2 1), (1 2) @
D 5 4 Dy D0
+my® 4 @@ o
T O O O N O O
+m@y® 4 @6 4 0,0
+m@y@ 4 0 4 @)@
1), (1 2) 2
£ mOyD 4 @y =g
2) (2 1), (1 2) 2
230 4y D0 0
+mg1)yé1) 4 méz)yéz) >

9 >0i=12.9k=12

Weassume a = 0.742.

The gain parameters and transition probabilities of
the semi-Markov decision process for this exam-

pleare givenin Tables 1-2.

Table 1. The gain parameters

Statei  Decisonk  m® ) u®
1 1 22.5 -150 -3375
2 24.0 -180 -4320
> 1 20.5 -150 -3075
2 225 -180 -4050
3 1 20 -150 -3000
2 225 -180 -4050
4 1 72 1200 86400
2 66 1600 105600
5 1 56 1250 95000
2 52 1400 100800
6 1 48 1200 93600
2 54 148 106560
7 1 5.2 -150 -780
2 6.8 -220 -1496
8 1 7.2 -120 -864
2 6.6 -135 -891
9 1 6.0 -128 -768
2 6.5 -140 -910
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Table 2. The transition probabilities of the semi-Markov decision process

State i Decisonk  pd  p®  p®

() () (k) () () (k)

i Py Pis Pis Pi7 Pig Pio
1 1 0 0 0 0.42 0.30 0.28 0 0 0
2 0 0 0 0.44 0.28 0.28 0 0 0
2 1 0 0 0 0.38 0.40 0.22 0 0 0
2 0 0 0 0.40 0.30 0.30 0 0 0
3 1 0 0 0 0.29 0.33 0.38 0 0 0
2 0 0 0 0.32 0.33 0.35 0 0 0
4 1 0.97 0 0 0 0 0 0.03 0 0
2 0.99 0 0 0 0 0 0.01 0 0
5 1 0 0.96 0 0 0 0 0 0.04 0
2 0 0.98 0 0 0 0 0 0.02 0
6 1 0 0 0.97 0 0 0 0 0 0.03
2 0 0 0.99 0 0 0 0 0 0.01
7 1 0 0 0 041 0.31 0.28 0 0 0
2 0 0 0 0.43 0.29 0.28 0 0 0
8 1 0 0 0 0.37 041 0.22 0 0 0
2 0 0 0 0.42 0.30 0.28 0 0 0
9 1 0 0 0 0.29 0.33 0.38 0 0 0
2 0 0 0 0.32 0.33 0.35 0 0 0

Using MATHEMATICA computer system and
the datafrom Tables 1-2 we obtain solution of the
problem:

y = 0.00445005, y = 0;
(1) = 0.00416844, y* = 0;
(1) = 000354532, ¥ = 0;
y41) = 0.00441825, ) = 0.000166008;
¥ =0,y = 0.00425351;
v = 0.000332827, ¥ = 0.00325502;
(1) = 0.000134208, y\? = 0;
y81) =0, y¥ = 0.0000850701;
v = 0.0000425351, y$? = 0,

From (39) we obtain probabilities

(1) =1, a(Z) —
(1) =1, a(Z) —

(1) _1 a32> _ o
‘1’ = 0963787378, a\” = 0.036212622;
(1) = 0,a? =1,
‘1’ = 0.092765104, a'? = 0.907234896;
(1) =1,a? = 0
‘1’ =0,a? = 1;
‘1’ =1,d% =0

The vector of the optimal action in each step is
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6 = (1, 1, 11 ]/4., 21 y6| 11211)1
where

_ { 1 with probability 0.963787378
47 | 2with probability 0.036212622

and

_ { 1 with probability 0.092765104
Y6 = 1 2 with probability 0.907234896.

In MATHEMATICA computer system, linear
programing is determined only for the minimum
problem. The minimum of the expected cost for
one step of the operation in thiscaseis

c(6)
= 3375 -0.00445005 + 4320 - 0.00416844
+ 3075 - 0.00354532 + 4050 - 0.00441825
+ 3000 - 0.036212622 + 4050 - 0.00354532
— 86400 - 0.963787378
— 10560 - 0.036212622
— 95000 - 0.036212622
— 100800 - 0.00425351
— 93600 - 0.092765104
— 106560 - 0.907234896
+ 780 - 0.000134208 + 1496 - 0.000134208
+ 864 - 0.0000850701 + 891 - 0.000134208
+ 768 - 0.0000850701
+ 910 - 0.0000425351 = —10550.7.
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The maximum of the expected gain for one step
of the operation in this case is expressed by a
number opposite to the corresponding minimum
expected cost

g(6) = — c(6) = 10550.7.

For availability parameter « = 0.743 no solution
subject to above constraints.

It should be mentioned that the Laplace transform
of reliability function can be found for an optimal
stationary strategy. A matrix equation (13) gives
this possiblity.

Consider the model with the set of “up” states
S, ={4,56,7,89} and the set of “down” states
S_=§-5,={1, 2,3}, For smplicity we
accepto = (1,1, 1,1, 2 21, 2 1).

From Theorem 3.2 (Boussemart & Limnios,
2004) it follows that there exist expectations
E(0;5.),i €Sy, and they are unique solutions of
the linear system of equations that are equivalent
to the matrix equation

[I - Pgi)] ' 65+ = TS+

where
(0 0 0 pf 0o 0]
o 0o o o0 p@ o0
@)
ng) _ O O O O O p69
R P pY 0 0 o
psy b2 P 0 0 0
p$Y P by o 0o 0l

— T
0 =|E(6%):i es.|
T, = [E(Ti(k)):i e5+] = [ml("):i e5+]
=[72, 52, 54, 5.2, 6.6, 6.0]7 [h].
Then, after substituting accordingly numbers,
_ -1 _
60 = [1 - PO "7,
= [74.022,53.38,54.659,67.401,

69.008, 65.852]7[H].

Under asumption that initial state is 4, the
conditional expected value

E(04s_) = 74.022[N]

means expectation of the time to failure of the
operation process.

7. Conclusion

The semi-Markov decision processes theory
provides the possibility to formulate and solve the
optimization problems that can be modelled by
SM processes. In such kind of problems we
choose the process that brings the largest profit or
smallest cost. If the semi-Markov process
describing the evolution of the real system in a
long time satisfies the assumptions of the limit
theorem, we can use the results of the infinite du-
ration SM decision processes theory. An
algorithm that alows finding the best strategy is
equivadent to the some problem of linear
programing. The gain optimization problem
subject to the availability constraint for the semi-
Markov model of operation is considered and
solved.

From Theorem 5.5 (Mine & Osaki, 1970) for the
problem without additional constraints it follows,
that for every j € S existsexactly onek € D; such

that yj(k) > 0. For the gain optimization problem
subject to constraint of availability thistheoremis
not true. The optima stationary strategy can
contain the vectors with mixed decisions. This

fact extends the previously known results.
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